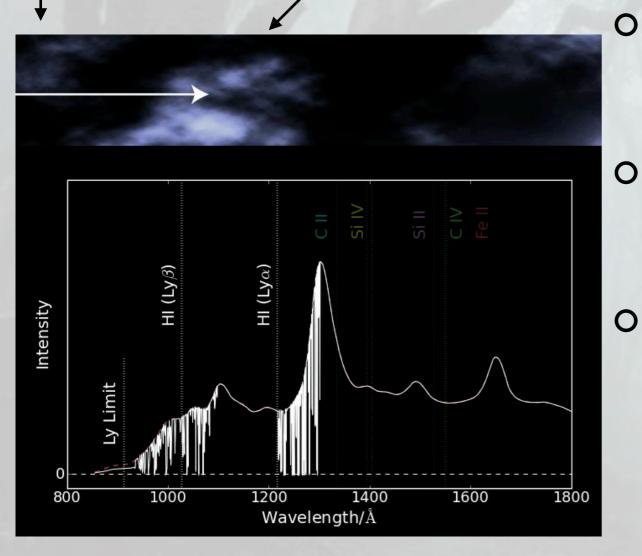


IPhU CLASS meeting 23rd Sept 2021

The WEAVE-QSO Survey

Mat Pieri and the WEAVE Collaboration



WQ Meeting 8th Sept 2021

Quasar Spectra and Lyman-a Forest

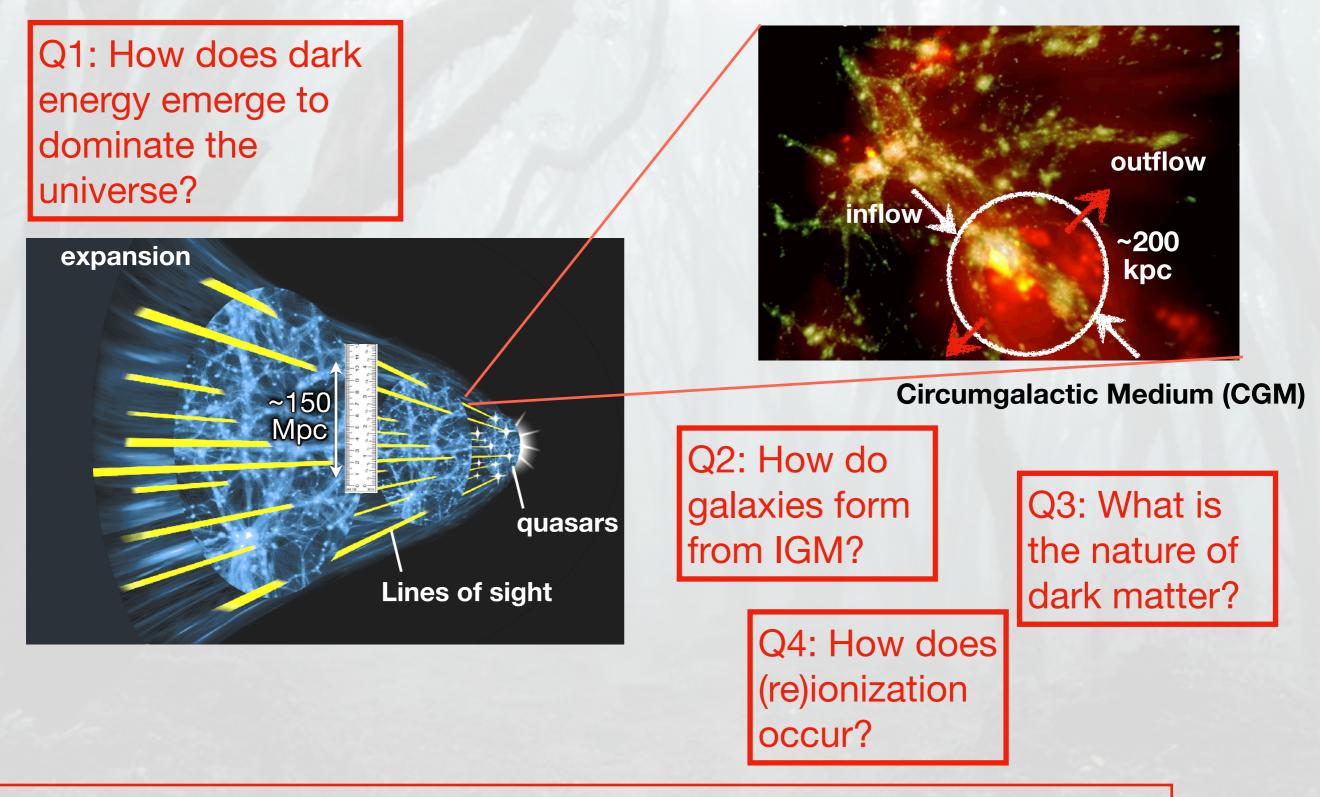
Quasar

Intergalactic medium

credit: Andrew Pontzen

O Line-of-sight probe of the IGM

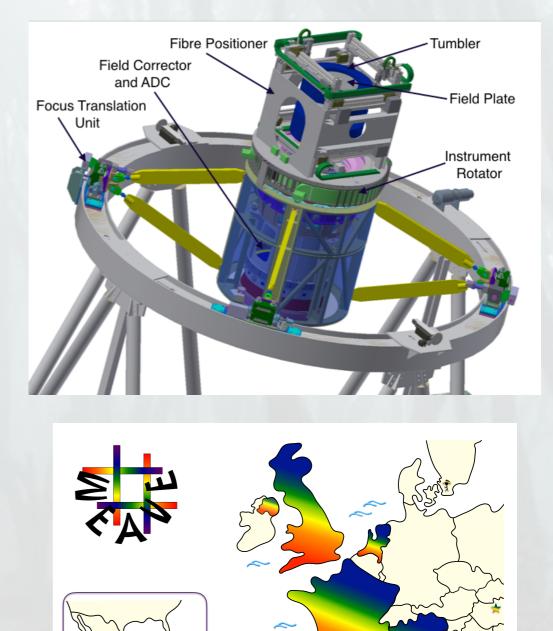
- O Gas with $1 \lesssim \frac{\rho}{\bar{\rho}} \lesssim 10$
 - O traces dark matter on large scales
- O Largely photoionized


O $\tau_{HI} \propto \rho_{H}^{1.7}$ and $f = CF = Ce^{-\tau_{\rm HI}}$

- Departures from this
 - O UV background modulation
 - O Strong lines
 - O Small scale physics
 - O Metal absorption

The Intergalactic medium dominates the universe by mass and volume

WEAVE-QSO: The Big Questions

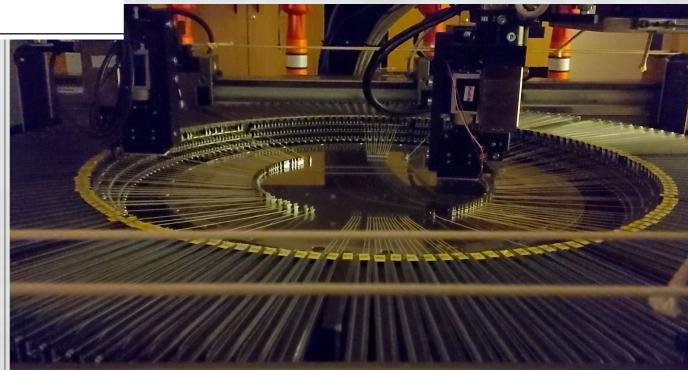


Addressed by WEAVE-QSO through high spatial and spectral resolution

WEAVE in a Nutshell

- New spectrographic survey facility for the 4.2m William Herschel Telescope
- Fide-field multi-object spectrograph with integral field units
- O WEAVE survey 70% of WHT time
 - O Ist light in QI 2022
- O Over 400 members over 11 countries
 - O WEAVE-QSO around 50
- O Open model membership based mostly on nations
 - O But institutional and individual buy-in is possible
- O More members and partners welcome

Multi-Object Spectroscopy Mode


MOS:WEAVE-QSO's main survey mode in dark time

Focal-plane mode	MOS fibres (MOS-A)	MOS fibres (MOS-B)	
Tumbler position	0°	180°	
Diameter of individual fibres	1.3" (85µm)	1.3" (85µm)	
Multiplex	960 fibres	940 fibres	
Diameter of field over which	2°	2°	
deployable			
Minimum separation on sky	~ 60''	~ 60″	
Fibres per IFU	_	_	
IFU field of view	_	_	
IFU filling factor	_	_	
Fibres for auto-guiding	$8 \times 3\%5$ coherent bundles	8×3 ["] ,5 coherent bundles	
Fibres for sky subtraction	$\sim 5 - 10\%$ of science fibres	$\sim 5 - 10\%$ of science fibres	
Configuration time	~ 55 minutes	~ 55 minutes	

WEAVE collaboration in prep

Low resolution: R=4000-7500

High resolution: R=16000-23000

Integral Field Unit Modes

LIFU and mIFU: recent WEAVE-QSO addition as a filler program

Focal-plane mode	mini-IFUs (mIFU)	Large IFU (LIFU)
Tumbler position	180°	90°
Diameter of individual fibres	1.3" (85µm)	2.6" (170µm)
Multiplex	20 IFUs	1 IFU
Diameter of field over which	2°	on axis
deployable		
Minimum separation on sky	~ 60″	-
Fibres per IFU	37	547
IFU field of view	11" × 12"	$90'' \times 78''$
IFU filling factor	0.50	0.55
Fibres for auto-guiding	$8 \times 3\%5$ coherent bundles	Separate camera
		$(4' \times 3!7 \text{ field})$
Fibres for sky subtraction	one of the mIFUs	8 peripheral bundles
-		of 7 fibres each
Configuration time	<20 minutes	~ 1 minute

WEAVE collaboration in prep

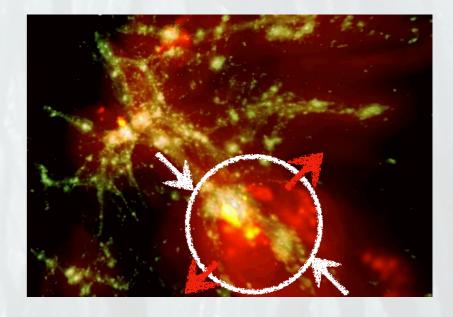
The WEAVE Primary Science Surveys

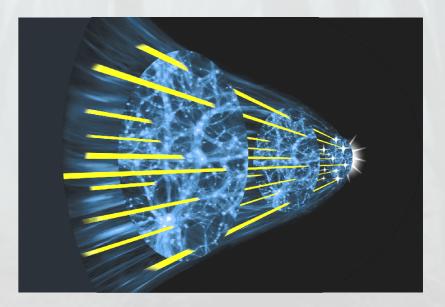
The WEAVE Survey consists of 8 primary science surveys:

3 Galactic surveys:

- O Galactic Archaeology (STL:V. Hill, OCA)
- O SCIP (Stellar, Circumstellar, and Interstellar Physics STL: J. Drew, Herts)
- O White Dwarfs (STL: B. Gänsicke, Warwick)

and **5 Extragalactic** surveys:

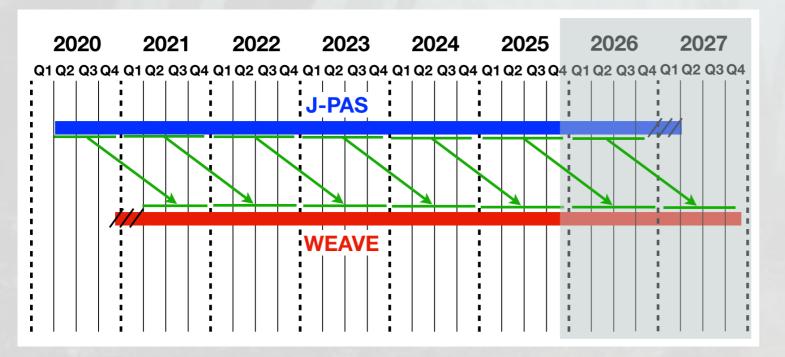

- O WEAVE-Clusters (STL: J.A. Aguerri, IAC)
- O WEAVE-Apertif (STL: J. Falcón Barroso, IAC)
- StePS (Stellar Population Survey at intermediate redshifts STL:A. lovino, Milano)
- O WEAVE-LOFAR (STL: D. Smith, Herts)
- WEAVE-QSO (STL: M. Pieri, LAM)

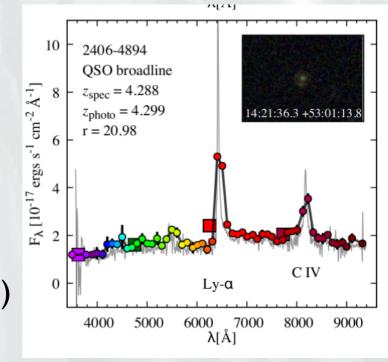


WEAVE-QSO Transforms the Landscape

- O High spectral resolution (R=6000 or 20000)
 - High fidelity recovery of galaxies in absorption (particularly metals)
 - O Measure smaller line-of-sight structure for thermal history (reionisation), sum of neutrino masses and exotic dark matter
- O High spatial resolution from dense sample of quasars
 - O Measure BAO in large 3D structure
 - Map the cosmic web using IGM tomography
 - O AGN environments, pressure support, detect galaxies in absorption, CW emission

WEAVE-QSO Survey Plan Sketch

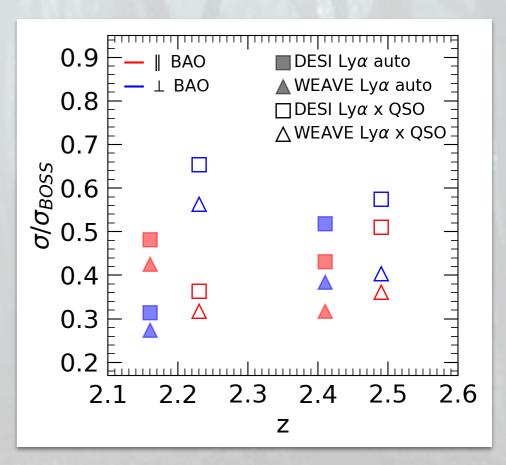

- "High resolution" massive IGM survey
 - O Spectral res LR: 3xBOSS (2xDESI), or HR: 12xBOSS (9XDESI)
 - O Spatial res quasar number density: 4-5 x BOSS ~2 x DESI
 - + LIFU (quasars multiplexes) and mIFU (galaxies in absorption)
- O MOS survey fields shared with Galactic Archeology and LOFAR
- O Goal: 400,000 quasar spectra with z>2.1 and $m_r<23.2$ in MOS LR dark time
 - O + small sample in HR grey time
- O Target selection
 - O 6000 deg² of m_r < 23.2 quasars from J-PAS
 - O 2500 deg² of quasars G=20.5 from Gaia and m_r <21.5 BOSS/eBOSS
- O HETDEX: Special 400 deg² area in J-PAS footprint




J-PAS and WEAVE-QSO

- O J-PAS imaging with 54 narrow filters ideal for quasar identification
- O Memorandum of understanding signed between the two surveys for
 - O Sharing targets and spectra
 - O 6000 WEAVE fibre hours awarded to J-PAS
 - O Joint science (e.g. forest and image cross-correlation potential)

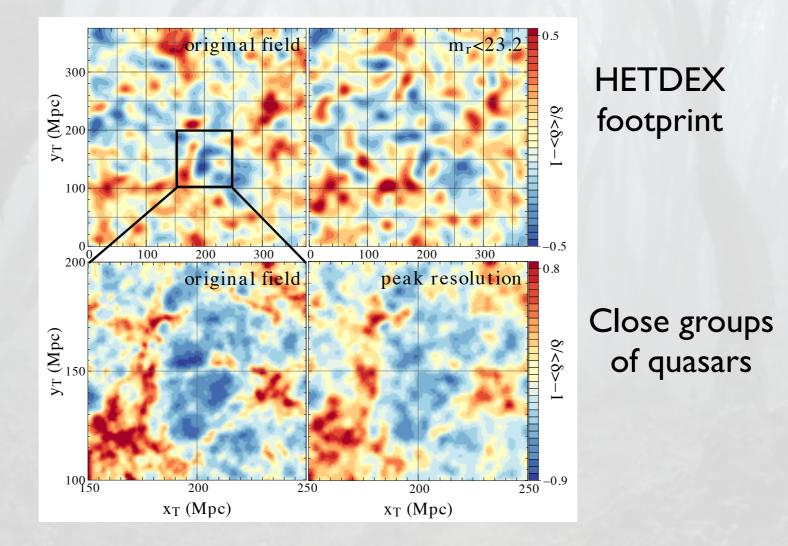
Bonoli+ 2021



WQ Meeting 8th Sept 2021

Projected BAO constraints

- WEAVE-QSO BAO ~6000 deg² J-PAS targeted footprint
- O DESI: more Lya quasars but lower density
 - $\sigma \propto I/Density and \propto I/\sqrt{Area}$
 - WEAVE-QSO fibre hour constrained choose between z<2.45 or z>2.45
 - O 25% smaller errors at z>2.45
- 5 🗸
 - O 12% smaller errors at z<2.45
- O Prospects for novel BAO
 - O Galaxies in absorption (paper in prep)
 - O Using J-PAS as a Lyα intensity map and x-corr with Lyα forest


credit: Michael Blomqvist

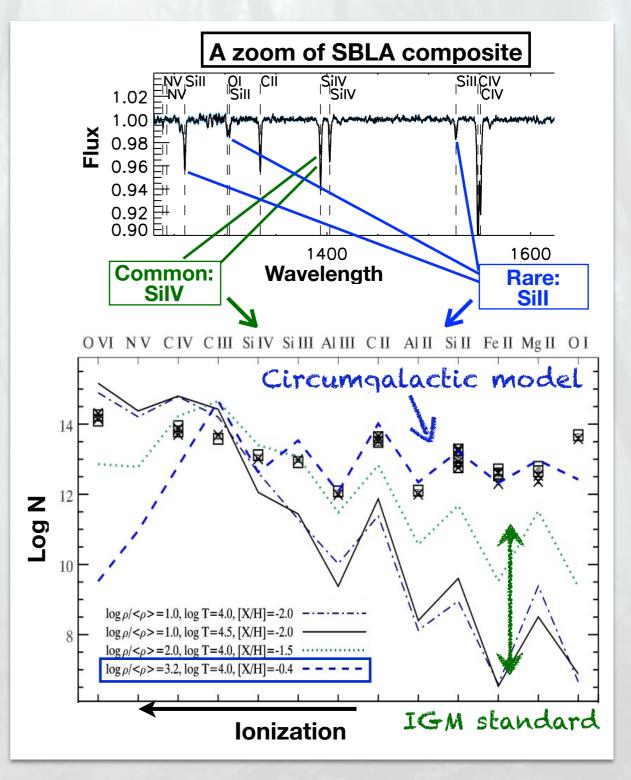
IGM Tomography in WEAVE-QSO

- O The next frontier of galaxy formation and cosmology: mapping at z>2
- O Large-scales allow novel cosmology (e.g. void counts, critical points etc)
- O Small-scales allow big picture on galaxy formation at cosmic noon
- O See Katarina's talk

WEAVE-QSO as a Tomography Pilot

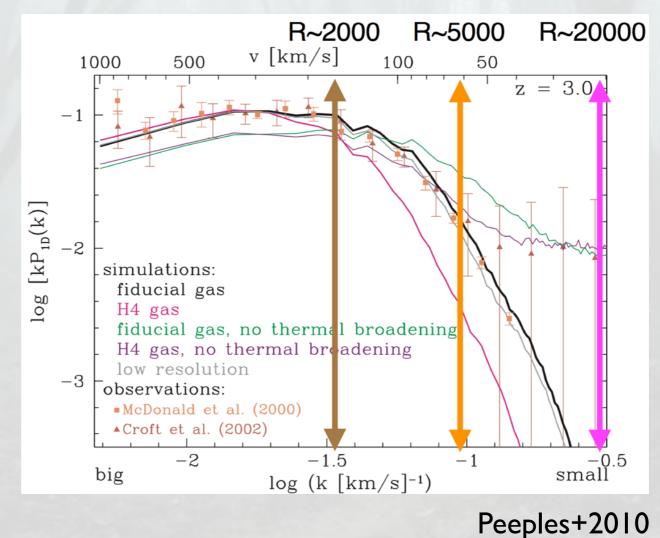
Survey/Facility	When	Area	\mathbf{m}_r	$\langle \mathrm{L}_T angle$	z	References
CLAMATO	2014-	$0.8 \ deg^2$	24.7	2.5 Mpc	[2, 2.5]	Lee et al. 2018 [82]
PFS	2022-	$\sim \! 15 \ deg^2$	24.7	$\sim 3 \text{ Mpc}$	[2.5, 3.]	Takada et al. 2014 [159]
(Subaru)						and private comm.
MOSAIC	2024-	$1-2 \text{ deg}^2$	25.5	$\sim 2 \text{ Mpc}$	[3, 3.5]	Japelj et al. 2019
(ELT)		(TBC)				
WQ wide (J-PAS)	2020-	$6000 \ deg^2$	23.2	$\sim 20 \text{ Mpc}$	[2, 3.5]	this work
WQmid (HETDEX-N)	2020-	$418 \ deg^2$	23.5	$\sim \! 14 \text{ Mpc}$	[2, 3.5]	this work
WQ high density	2020-	-	23.2	$\sim 2 \text{ Mpc}$	[2, 3.5]	this work
MSE	-	$\sim \! 80 \ { m deg}^2$	-	-	[2,3]	"The Detailed Science Case
						for the MSE, 2019" ¹ (p182)
GMT	-	-	-	-	-	"the GMT Science Book 2018" ²
						(p136)

DESI also (plan under discussion)


Note: I am a new coordinator of MOSIAC SWG2

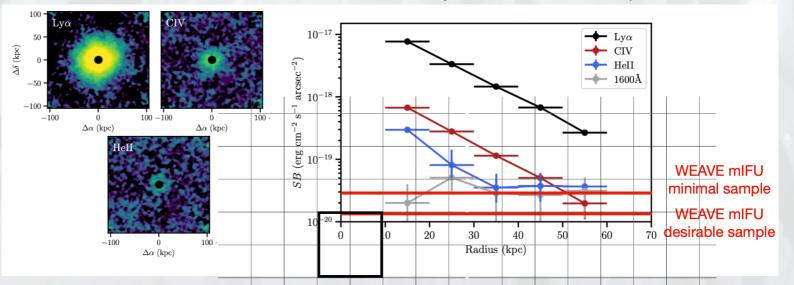
Absorber Science in WEAVE-QSO

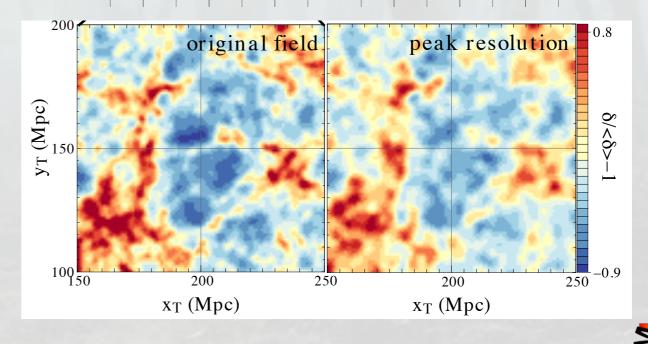
- O Recovery of DLAs and LLS
- O New sample: Strong-blended Lya
- O Public absorber catalogue with high legacy value
- Galaxy formation at SFR peak: Combination with cosmic web and galaxy surveys



Line-of-sight Forest Power Spectrum

- O WEAVE resolution for small-scale structure suppression
 - O Reionization/thermal history
 - O Neutrino masses
 - O Cold DM, Warm DM, Fuzzy DM




Whats new? IFU as filler program

- O Moderate seeing and grey time: MiniIFU
 - O Galaxy and quasar environments in emission

Comparison to MUSE (Fossati et al 2021)

- O Worst seeing: LargeIFU for quasar multiplets within I Mpc
 - O AGN environments in absorption
 - O Small scales: DM, pressure, line broadening
 - O Cosmic web small scale extension

Whats new? Reviewing Survey Plan

- O WEAVE delays with respect to DESI
- O J-PAS delays to give targets to WEAVE-QSO
- O CW given greater priority
 - O More large-scale multiplets
- O BAO get boost by going fainter to $m_r < 23.5$ but over narrow redshift
 - O What redshift?

Summary

- O WEAVE will span the full range of astrophysics on stellar scales to the largest structures measured
- O From our region of the Milky Way to beyond reionization
- O WEAVE-QSO is diverse
 - From small-scales (in the CGM) to the CW filaments to the largest scales
 - O Measuring galaxy formation and early dark energy
- O Entering an exciting and busy period

science pay off is coming soon!

