Mass-orbit modeling of galaxy clusters: mass profiles, orbital shapes by galaxy type & pseudo phase-space density

Andrea BIVIANO OATS, Trieste

Dissipationless cosmological simulations

velocity anisotropy $\beta = 1$

NFW-like density profiles

isotropic inner orbits somewhat radial outer orbits

virial radius: radius of quasi-dynamical equilibrium mean density \approx 100x critical density of Universe

Dissipationless cosmological simulations velocity anisotropy

$$\beta = 1 - \frac{\sigma_{\theta}^2}{\sigma_r^2}$$

NFW-like density profiles

3

isotropic inner orbits somewhat radial outer orbits esp. in hi-mass clusters

Cluster density profiles: concentrations

Stack of 54 *z*~0.05 regular (WINGS) clusters

concentration
$$c = \frac{r_{\text{vir}}}{r_{-2}}$$

 Λ cdm simulations: $c_{mass} = 4$ Navarro+97

projected NFW fits well surface number density profile with c = 4 Carlberg+97

c(red) = 4, c(blue) = 1.3Collister & Lahav 05

> ⇒ Ellipticals follow mass, spirals 4x wider distribution S0s closer to ellipticals

Gary Mamon (IAP), Mass-orbit modeling of galaxy clusters: mass profiles, orbital shapes by galaxy type & pseudo phase-space density, 15 June 2022, GECO Cafe

Motivations: analyze observations of galaxy clusters to test & interpret what we learn from cosmological simulations of Dark Matter

Don't fully trust *hydrodynamical* simulations!

Mass - orbit modeling method(s)

Gary Mamon (IAP), Mass-orbit modeling of galaxy clusters: mass profiles, orbital shapes by galaxy type & pseudo phase-space density, 15 June 2022, GECO Cafe

Measuring dark matter in spheroidal systems: using different physics

Newtonian dynamics: mass/orbit modeling

P = (anisotropic) pressure tensor ν = tracer number density Φ = potential

 $\nabla p = -\rho\,\nabla\Phi$

p = pressure $\rho = \text{gas} \text{ (mass or number) density}$

General relativity: gravitational lensing

purple = hot gas

Particle physics: γ -ray annihilation or decay

Spherical stationary Jeans equation

tracer density

anisotropic dynamical pressure

$$\frac{d\left(\nu\sigma_r^2\right)}{dr} + 2\frac{\beta(r)}{r}\nu\sigma_r^2 = -\nu\frac{GM(r)}{r^2}$$
$$\beta(r) = 1 - \frac{\sigma_\theta^2(r)}{\sigma_r^2(r)} = \text{velocity anisotropy}$$

isotropic orbits: $\beta = 0$ radial orbits: $\beta = 1$ circular orbits: $\beta \rightarrow -\infty$

10

mass / anisotropy degeneracy *MAD*

Diagnostics from line-of-sight velocity distribution

cuspier velocity distribution \Rightarrow more radial orbits

MAMPOSSt: Modeling Anisotropy & Mass Profiles

Mamon, Biviano & Boué 13

very fast

Bavesian w MCMC

PDF of distribution in projected phase space

$$p(R, v_z) = \frac{4\pi R}{\Delta N_p} \int_R^\infty \frac{r \nu(r)}{\sqrt{r^2 - R^2}} h(v_z | R, r) dr$$

$$\nu = \text{tracer volume density}$$

$$h = \text{local velocity distribution function}$$
Gaussian 3D velocities:
$$h(v_z | R, r) = \frac{1}{2\pi \sigma_z^2(R, r)} \exp\left[-\frac{v_z^2}{2\sigma_z^2(R, r)}\right]$$

$$\sigma_z(R, r) = \sqrt{1 - \beta(r) \left(\frac{R}{r}\right)^2} \sigma_r(r) \text{ Binney \& Mamon 82}$$

Ζ

12

solution to Jeans equation of local dynamical equilibrium

$$\sigma_r^2(r) = \frac{1}{\nu(r)} \int_r^\infty \exp\left[2\int_r^2 \beta(t)\frac{\mathrm{d}t}{t}\right]\nu(s)\frac{GM(s)}{s^2}\,\mathrm{d}s$$

Comparison with Machine Learning

Cluster sample

Stacks of 54 regular WINGS clusters

Cava, Biviano, GM+19

 $\langle z \rangle = 0.05$ $\left\langle \log\left(\frac{M}{M_{\odot}}\right) \right\rangle = 14.8$

stack by virial radius

3 ways to estimate virial radius:
1) velocity dispersion "sigv"
2) richness "Num"
3) X-ray temperature "tempX"

4700 galaxies (*R* < *r*_{vir}): 1600 E, 1850 S0, 1200 S

Kinematics by morphological class

Statistical analysis method

Bayesian analysis

Likelihood
$$-\ln \mathscr{L} = -\sum_{i} \ln p(v_{\text{LOS},i} | R_i)$$

MCMC (CosmoMCMC) 6 chains of 10 000 N_{free} in // \iff ~ 1 million chain elements / model

Priors

flat on all log masses and radii, inner slope Gaussian on tracer surface density profile (from previous fit on photometric data w cst field)

Model selection: Bayesian evidence

Akaike AICc: $-2 \ln \mathscr{L} + 2N_{\text{free}}$ BIC: $-2 \ln \mathscr{L} + \ln N_{\text{data}} N_{\text{free}}$

Gary Mamon (IAP), Mass-orbit modeling of galaxy clusters: mass profiles, orbital shapes by galaxy type & pseudo phase-space density, 15 June 2022, GECO Cafe

Not 1, not 2

model	mass n	nodel	anis.	inne	er anis	otropy	oute	r ani	sotropy	TAND	R^{-1}	$-\ln \mathcal{L}_{MLE}$	#	AIC	BIC
	cluster	BCG	model	Е	S0	S	E	S 0	S			· · · ·	free	- ·	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	posterior	(14)	Bayesiar	n evidence
1	gNFW	-	Т	F	F	F	F	F	F	Y	0.004	33526.28	12	67076.62	67154.32
2	NFW	NFW	Т	F	F	F	F	F	F	Ν	0.065	33526.47	16	67085.05	67188.62

Not 1, not 2, but 30 sets of priors!

model	mass m	odel	anis.	inne	er anise	otropy	oute	er anis	otropy	TAND	R^{-1}	$-\ln \mathcal{L}_{MLE}$	#	AIC	BIC
	cluster	BCG	model	Е	S0	S	E	S 0	S				free		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	posterior	(14)	Bayesiar	n evidence
1	gNFW	_	Т	F	F	F	F	F	F	Y	0.004	33526.28	12	67076.62	67154.32
2	NFW	NFW	Т	F	F	F	F	F	F	Ν	0.065	33526.47	16	67085.05	67188.62
3	NFW	NFW	Т	F	F	F	F	F	F	Y	0.012	33526.50	13	67079.08	67163.24
4	gNFW	—	Т	F	0	0	F	F	F	Y	0.005	33526.50	10	67073.05	67137.80
5	NFW	NFW	gOM	F	F	F	F	F	F	Y	0.007	33526.55	13	67079.18	6/163.34
6	gNFW	~ -1	gOM	F	F	F	F	F	F	Y	0.011	33526.79	12	67077.65	67155.34
7	gNFW	-	Т	F	F	F	F	F	\mathbf{F}	Ν	0.040	33526.91	15	67083.92	67181.01
8	NFW	PS4	Т	F	F	F	F	F	F	Y	0.005	33528.33	13	67082.74	67166.90
9	NFW	$(-1)^{-1}$	Т	F	F	F	F	F	F	Y	0.002	33528.36	11	67078.77	67150.00
10	NFW	_	Т	F	0	0	F	F	F	Y	0.001	33528.41	9	67074.86	67133.14
11	gNFW	-	Т	0	0	0	F	F	F	Y	0.005	33528.41	9	67074.86	67133.14
12	NFW	-	Т	F	F	F	F	F	F	Ν	0.031	33528.50	14	67085.09	67175.72
13	NFW	-1	Т	0	0	0	F	F	F	Y	0.002	33528.54	8	67073.11	67124.92
14	NFW	PS4	Т	F	F	F	F	F	F	Ν	0.043	33528.55	16	67089.21	67192.77
15	NFW		gOM	F	F	F	F	F	F	Y	0.003	33528.92	11	67079.90	67151.12
16	NFW	-1	Ť	0	0	0	0	F	F	Y	0.003	33529.20	7	67072.42	67117.76
Einas	to (free n)	-	Т	0	0	0	0	0	F	Y	0.002	33529.74	6	67073.50	67118.84
18	gNFW	_	Т	0	0	0	0	0	F	Ν	0.015	33529.90	8	67075.83	67127.64
19	gNFW		Т	0	0	F	0	0	F	Y	0.003	33530.03	8	67076.09	67127.90
20	NFW		Т	0	0	0	0	0	F	Ν	0.007	33530.23	7	67074.48	67119.82
21	gNFW	-1	Т	0	0	0	0	0	F	Y	0.002	33530.27	7	67074.56	67119.90
77	NEW		T	0	0	F	0	0	F	Y	0.002	33530.35	7	57074.72	67120.06
Finas	to (n=6)	_	Т	0	0	0	0	0	F	Y	0.002	33530.50	6	67073.02	67111.88
24	NFW	_	Т	0	0	0	0	0	F	Y	0.001	33530.68	6	67073.38	67112.24
25	cNFW	· · _ · ·	Т	0	0	0	0	0	F	Y	0.003	33532.30	6	67076.62	67115.48
Herno	quist	_	Т	0	0	0	0	0	F	Y	0.001	33534.44	6	67080.90	67119.76
27	NFW	-1	gOM	0	0	0	0	0	F	Y	0.002	33537.09	6	67086.20	67125.06
28	NFW	·	iso	0	0	0	0	0	0		0.002	33538.52	5	67087.05	67119.44
29	NFW	_	Т	0	0	0	0	F	0	Y	0.001	33539.46	6	67090.94	67129.80
30	NFW	_	Т	0	0	0	F	0	0	Y	0.002	33539.56	6	67091.14	67130.00

Inner slopes of total mass density profile

Stack	sigv	tempX	Num
inner slope	$-1.4^{+0.5}_{-0.3}$	$-1.7^{+0.3}_{-0.2}$	$-1.8^{+0.4}_{-0.1}$
AICc(gNFW) –AICc(NFW)	1.2	-2.5	-5.9
BIC(gNFW) –BIC(NFW)	>+7	3.7	0.5
		unclear	

steeper inner slope caused by BCG?

unoicai

S

Gary Mamon (*IAP*), Mass-orbit modeling of galaxy clusters: mass profiles, orbital shapes by galaxy type & pseudo phase-space density, 15 June 2022, *GECO Cafe* 24

concentration vs. mass

Gary Mamon (IAP), Mass-orbit modeling of galaxy clusters: mass profiles, orbital snapes by galaxy type & pseudo phase-space density, 15 June 2022, GECO Cafe

Which morphology traces best the mass?

Outer vs. inner Velocity Anisotropy

Best models

AICc: NFW, isotropic inner orbits (all morpho types) isotropic outer orbits (E) semi-radial outer orbits (S0, S)

BIC: n=6 Einasto, isotropic inner orbits (all morpho types) isotropic outer orbits (E, S0) semi-radial outer orbits (S)

Why do ellipticals & SOs have isotropic inner orbits?

morphologically transformed from spirals

violent relaxation in merging clusters

1/3 of clusters undergo major mergers since z=1

dynamical friction of parent infalling groups

artificial phase mixing of imperfectly stacked halos

Why do spirals have isotropic inner orbits?

4x larger scale radius \Rightarrow rapid morphological transformation (< 1 orbit) \Rightarrow narrower range of apocenters & pericenters

selection effect from rapid morphological transformation of spirals!

Gary Mamon (IAP), Mass-orbit modeling of galaxy clusters: mass profiles, orbital shapes by galaxy type & pseudo phase-space density, 15 June 2022, GECO Ca

Pseudo-phase space density vs. radius

Biviano & GM in prep.

31

consider all MCMC model parameters (= in proportion to MAMPOSSt posteriors)

Are scaling relations indeed linear?

Biviano & GM in prep.

colors $\rightarrow \neq$ good-fitting mass & anisotropy models

Gary Mamon (IAP), Mass-orbit modeling of galaxy clusters: mass profiles, orbital shapes by galaxy type & pseudo phase-space density, 15 June 2022, GECO Cafe

Do linear models have expected slopes?

Biviano & GM in prep.

33

colors = \neq best-fitting mass & anisotropy models

Gary Mamon (IAP), Mass-orbit modeling of galaxy clusters: mass profiles, orbital shapes by galaxy type & pseudo phase-space density, 15 June 2022, GECO Cafe

= f (morph. type & model) for number density

as expected for mass density (Es for all models) & number density (Es only)

Q(r) slope:

What do we learn from PPSDs?

Higher linear fraction for Q_{ρ} than for Q_{ν} + Slopes of Q_{ρ} as in dissipationless simulations \rightarrow PPSD is related to gravitational potential \rightarrow PPSD \leftrightarrow violent relaxation Colombi 21

or are power-law PPSDs just a coincidence? (do they extrapolate to low and high radial distances?)

Gary Mamon (IAP), Mass-orbit modeling of galaxy clusters: mass profiles, orbital shapes by galaxy type & psi

Conclusions

Cluster total mass density profiles NFW/Einasto or possibly steeper (BCG?)

concentration vs. mass consistent with cosmological simulations

Galaxies vs. mass Ellipticals trace mass best, spirals poorly S0s closer to ellipticals

Outer orbits in clusters S more radial, E more isotropic, S0s in between, closer to S

Inner orbits in clusters E/S0: violent relax'n & dyn'l friction of groups S: selection effect of small range of pericenters

pseudo-phase space density driven by gravitational potential?