
GECO	Transients	
	1.	What?		

		Any	transient/variable	event	involving	explosive/accre4on	phenomena	
		Supernovae	(SN),	gamma-ray	bursts	(GRBs),	9dal	disrup9on	events	(TDEs),	
	ac9ve	galac9c	nuclei	(AGN),	BH/NS	mergers	(GWR)	etc.		

	2.	When?	
～30	min	mee4ngs		
In	theory:	every	other	week;	in	prac9ce:	once	per	month		
(4	mee9ngs	since	February)	
	

	3.	Who?	
	Organizer:	Stéphane	Blondin	
	Mailing	list:	13	people;	typical	aTendance	4-5/mee9ng	(sub-cri9cal)	

	

h6p://wiki.lam.fr/geco/TransientsCircle	



Credit:	Mansi	Kasliwal	
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Transients	Prospec4ve	Mee4ng	(12	May	2016)	
	
Ever-increasing	interest	in	transient	science	

	Numerous	events:	SN+novae,	GRB,	TDE,	SBO,	AGN,	NS+BH	mergers
	CharacterisLc	Lmescales	from	(milli-)seconds	to	months	
	RadiaLve	display	covering	sub-mm	to	γ-rays,	+	neutrino/GW	
	è	progenitors,	explosion	mechanisms,	feedback,	first	stars	

Numerous	ongoing	and	planned	surveys	
	Ongoing:	iPTF,	PS1,	ASSASN,	PESSTO…	
	Future:	LSST,	Pan-STARRS,	SVOM,	LT2,	WFIRST,	(Euclid?)...	

	
Na9onal	priori9es	(LAM	involvement)	

	SVOM	(+ground	follow-up),	SOXS(?),	NOT+NTE(?),		
	LOFAR	(NenuFAR),	Adv.	VIRGO,	ATHENA,	WFIRST	
	suivi	sol	Gaia	(WEAVE,	MOONS,	MISTRAL,	4MOST),	LSST	(?)	



ASTRONOMY
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We report the discovery of ASASSN-15lh (SN 2015L), which we interpret as the most
luminous supernova yet found. At redshift z = 0.2326, ASASSN-15lh reached an absolute
magnitude of Mu,AB = –23.5 ± 0.1 and bolometric luminosity Lbol = (2.2 ± 0.2) × 1045 ergs s–1,
which is more than twice as luminous as any previously known supernova. It has several
major features characteristic of the hydrogen-poor super-luminous supernovae (SLSNe-I),
whose energy sources and progenitors are currently poorly understood. In contrast to
most previously known SLSNe-I that reside in star-forming dwarf galaxies, ASASSN-15lh
appears to be hosted by a luminous galaxy (MK ≈ –25.5) with little star formation. In the
4 months since first detection, ASASSN-15lh radiated (1.1 ± 0.2) × 1052 ergs, challenging
the magnetar model for its engine.

O
nly within the past two decades has the
most luminous class of supernovae (super-
luminous supernovae, SLSNe) been identi-
fied (1). Comparedwith themost commonly
discovered SNe (Type Ia), SLSNe are more

luminous by over two magnitudes at peak and
rarer by at least 3 orders of magnitude (2). Like

normal SNe, SLSNe are classified by their spectra
as either SLSN-I (hydrogen-poor) or SLSN-II
(hydrogen-rich). Yet, the physical characteristics
of SLSNe may not be simple extensions from
their low-luminosity counterparts (1). In particu-
lar, the power source for SLSNe-I is poorly un-
derstood (3). Adding to the puzzle, SLSNe tend
to explode in low-luminosity, star-forming dwarf
galaxies (4–6). The recent advent of wide-area,
untargeted transient surveys hasmade the system-
atic discovery and investigation of the SLSNe pop-
ulation possible [(7, 8) and references therein].
The All-Sky Automated Survey for SuperNovae

[ASAS-SN;www.astronomy.ohio-state.edu/~assassin
(9)] scans the visible sky every two to three
nights to depths of V ≈ 16.5 to 17.3 mag using a
global network of 14-cm telescopes (9) in an
untargeted search for new transients, particu-
larly bright supernovae.
On 14 June 2015 (universal time dates are used

throughout this paper), ASAS-SN triggered on a
new source located at RA = 22h02m15s.45 Dec =
–61°39′34″.6 (J2000), coinciding with a galaxy
of thenunknown redshift, APMUKS(BJ) B215839.70–
615403.9 (10). Upon confirmationwith our follow-
up telescopes, we designated this new source
ASASSN-15lh and published its coordinates (11).
By combining multiple epochs of ASAS-SN im-

ages, we extended the detections to fainter fluxes,
finding prediscovery images of ASASSN-15lh from
8 May 2015 (V = 17.39 ± 0.23 mag), and the light
curve through 19 September 2015 is shown in
Fig. 1. The ASAS-SN light curve peaked at V =
16.9 ± 0.1 on approximately tpeak ~ JD2457179
(2015 June 05) based on a parabolic fit to the
lightcurve (Fig. 1, dashed line). Follow-up images
were taken with the Las Cumbres Observatory
GlobalTelescopeNetwork (LCOGT) 1-m telescopes,
and the BV light-curves with the galaxy contri-
bution subtracted are also shown.

We obtained an optical spectrum (3700 to
9200Å) of ASASSN-15lh on 21 June 2015with the
du Pont 100-inch telescope. The steep spectral
slope with relatively high blue flux motivated
SwiftUltraViolet and Optical Telescope (UVOT)/
X-Ray Telescope (XRT) (12) target-of-opportunity
observations starting on 24 June 2015. The six-
band Swift light curve spanning from the ultra-
violet (UV) to the optical (1928 to 5468Å) is shown
in Fig. 1. The Swift spectral energy distribution
(SED), peaking in theUV, indicates that the source
has a high temperature. We derive a 3s x-ray flux
limit of <1.6 × 10−14 ergs s–1 cm–2 (0.3 to 10 keV)
from a total XRT exposure of 81 ks taken between
24 June and 18 September 2015.
The du Pont spectrum is mostly featureless

(Fig. 2A, first from the top), except for a deep,
broad absorption trough near ~5100 Å (observer
frame). SNID (13), a commonly used SN classifi-
cation software that has a spectral library ofmost
types of supernovae except SLSN, failed to find a
good SN match. However, we noticed a resem-
blance between the trough and a feature attributed
to O II absorption near 4100 Å (rest frame) in the
spectrum of PTF10cwr/SN 2010gx, a SLSN-I at z =
0.230 (3, 14, 15). Assuming that the ASASSN-15lh
absorption trough (full width at half maximum
of ~104 km s–1) was also due to the same feature
indicated a similar redshift of z ~ 0.23. An op-
tical spectrum (3250 to 6150 Å) obtained on the
Southern African Large Telescope (SALT) revealed
a clear Mg II absorption doublet (ll2796, 2803)
at z = 0.232, confirming the redshift expected
from our tentative line identification. Subsequent
Magellan/Clay (6 July) and SALT (7 July) spectra
refined the redshift to z= 0.2326 (Fig. 2, C andD).
The available rest frame spectra show continua
with steep spectral slope, relatively highblue fluxes,
and several broad absorption features also seen
in PTF10cwr/SN 2010gx (Fig. 2A, features “a,” “b,”
and “c”) and without hydrogen or helium fea-
tures, which is consistent with the main spectral
features of SLSNe-I (1, 3). The broad absorption
feature near 4400Å (Fig. 2, “d”) seen in PTF10cwr/
SN 2010gx is not present in ASASSN-15lh.
ASASSN-15lh thus has somedistinct spectral char-
acteristics in comparisonwith PTF10cwr/SN2010gx
and some other SLSNe-I (3).
Using a luminosity distance of 1171 Mpc (stan-

dard Planck cosmology at z = 0.2326), Galactic
extinction of E(B – V) = 0.03 mag (16), assuming
no host extinction (thus, the luminosity derived
is likely a lower limit), and fitting the Swift and
LCOGT flux measurements to a simple black-
body (BB) model, we obtain declining rest-frame
temperatures of TBB from 2.1 × 104 to 1.3 × 104 K
and bolometric luminosities of Lbol = 2.2 × 1045

to 0.4 × 1045 ergs s–1 at rest-frame phases relative
to the peak of trest ~ 15 and ~50 days, respectively
(Fig. 3). ASASSN-15lh’s bolometric magnitude de-
clines at a best-fit linear rate of 0.048 mag day–1,
which is practically identical to SLSN-I iPTF13ajg
(17) at 0.049 mag day–1 during similar phases
(~10 to ~50 days). Subsequently, the luminosity
and temperature reach a “plateau” phase with
slow changes, and a similar trend is also seen for
iPTF13ajg though with sparser coverage. Overall,
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Dong	et	al.	(Science,	351,	257)		



Figure S5. Bolometric light curves of ASASSN-15lh and other supernovae for comparison.

The bolometric light curves of hydrogen-poor supernovae iPTFajg, PTF12dam, Type Ia super-

nova SN 2003du, Type Ic-GRB (“hypernova”) SN 1998bw, Type IIP supernova SN 1999em and

Type II supernova SN 1987A are plotted. The bolometric luminosity of the Milky Way galaxy

is shown as a dashed line.

17

Possible	power	sources:	
	
1)	CSM	shock	interaLon?	
	
2)	56Ni	radioacLve	decay?		
	
3)	Magnetar	spindown?		
	
4)	Tidal-disrupLon	event?	



Thanks	for	your	(transient)	a6enLon!	


