Machine Learning in Euclid Strong Lensing Working Group

Eric Jullo

Based on slides taken from the ECSL-WG Thanks to the support of ISSI @ Bern

Context

- Today, the number of known lenses is ~1000.
- Euclid will observe about 100 000 lenses (LensPop, Collett 2015)
 - in a single uniform survey
 - with higher resolutions compared to ground based survey (DES, KiDS, LSST...)
- Only SKA2-mid could yield similar number of lenses
- Euclid will observe 15,000 deg² to depth 24.5 in VIS filter, FWHM=0.1"

Many Science cases

- Study of galaxy clusters, structure and galaxy formation
- Study of high redshift galaxies, reionization
- High resolution study of AGN
- Compound lensing cosmography

Existing lens samples

BOSS-SLACS

Bolton et al. 2006

Petrillo et al. 2016

CFHT-SL2S

Cabanac et al. 2007

HSC

Faure et al. 2008

Nord et al. 2016

Sonnenfeld et al. 2017

Existing search methods

- Visual inspection (Jackson et al. 2008)
- Detect arc-like features (Alard et al. 2006, Seidel & Bartelmann 2007, Bom et al. 2007)
- Detect rings (Gavazzi et al. 2014, Joseph et al. 2014)
- Lens model fitting (Sonnenfeld et al. 2017)
- Artificial Neural Networks & Convolutional Neural Networks
- Support Vector Machines

Strong Lensing Simulation challenge

- Mock lenses taken from Millenium Simulations
 - Lightcone 1.6 deg², up to z=6
 - Projection in lens planes and ray-tracing with GLAMER (Metcalf & Petkova 2014
 - Extrapolation beyond N-body resolution with NFW analytical profiles
- Background sources taken from Hubble UDF
 - Decomposed into shapelets to remove noise (Meneghetti et al. 2008)
- Visible galaxies taken from Millenium semi-analytic model (Guo et al. 2011)
 - Bulge and disk simulated with Sersic profiles
 - Spiral arms model from Metcalf et al. 2018

Strong Lensing Simulation challenge

- Production of 20,000 images in *u,g,r,i* KiDS and VIS band for Euclid
 →100,000 images of 101x101 pixels for training
- The test sample contains 100,000 images VIS and 400,000 images KiDS
- The participants have 48h to rank each image between 0 (Non-Lens) and 1 (Lens)
- The challenge was open btw Nov 25th, 2016 and Feb 5th, 2017
- 24 entries in the challenge (people from Euclid, KiDS, HSC, ...) Jackson & Togore examined 70,000 and 30,000 images in 48-hours

Support Vector Machine – Supervised

Vapnik et al. 1992

Gabor-SVM (Hartley et al. 2017)

- Extraction of features from images using
 - Sextractor & GALFIT
 - Gabor filter bank & their statistical moments
- Use Scikit to run SVM

$$G_{c}[i, j] = Be^{-\frac{(i^{2}+j^{2})}{2\sigma^{2}}} \cos\left(\frac{2\pi}{\lambda}(i\cos\theta + j\sin\theta)\right)$$

Convolutional Neural Networks

Example of CNN (Schaefer et al. 2017)

Glossary

- Fully connected layer: the classic ANN neuron layer. Every input is connected to every neuron of the layers. They are used as the final CNN layers to merge the information contained in the feature maps into the desired out- put form.
- Dropout layer: only active during training. They randomly sever half the connections between the two layers they separate. Reduce coadaption of the neurons (learning the same features) and reduce overfitting.
- Batch normalization layers : normalize and shift the output along a small input sample B = {x1...m} following the equation

$$y_i = \gamma \frac{x_i - \mu_B}{\sigma_B^2} + \beta,$$

where μ_B and σ_B are the mean and the variance over *B*. γ and β are two model parameters of the layer. Batch normalization is used to increase the training speed of the CNN

Schaefer et al. 2017

Residual blocks

 \mathbf{X} weight layer relu \mathbf{X} weight layer identity $\mathcal{F}(\mathbf{x}) +$ relu

ReLU (rectified layer unit, Nair & Hinton 2010) $f(x) = \max(x,0)$

Residual blocks: Learning the difference to the identity. Easier to initialize and to train in deep architectures

He et al. 2015

Same baseline architecture for space and ground using pre-activated bottleneck ResNet units:

- Conv1: 101x101x32
- ResNet1: (101x101x32) x 3
- ResNet2: (50x50x64) x 3
- ResNet3: (25x25x128) x 3
- ResNet4: (12x12x256) x 3
- ResNet5: (6x6x512) x 3
- AvePool: 512
- \implies A total of 46 convolution layers

Training: \sim 6 hours, Classification (space): \leq 1 minute [Nvidia Titan X (Pascal) GPU]

TRAINING DETAILS

Lanusse et al. 2018

Preprocessing

- Clipping of extreme values
- Subtraction of mean image
- Standardisation by noise variance
- Masked areas set to 0

Data augmentation

- Random rotations
- Random isotropic stretching (zooming)
- Random mirror flipping in x and y
- Additional Gaussian noise

Results

ROC curves Ground-Based

ROC curves Real KiDS images

Some false positive cases

Petrillo et al. 2017

Difficult true lenses

\checkmark True positive

J085446 - 012137

\checkmark True positive

J114330-014427

X True negative

J1403 + 0006

Name	type	AUROC	TPR_0	TPR_{10}	short description
CMU-DeepLens-ResNet-ground3	Ground-Based	0.98	0.09	0.45	CNN
CMU-DeepLens-Resnet-Voting	Ground-Based	0.98	0.02	0.10	CNN
LASTRO EPFL	Ground-Based	0.97	0.07	0.11	CNN
CAS Swinburne Melb	Ground-Based	0.96	0.02	0.08	CNN
AstrOmatic	Ground-Based	0.96	0.00	0.01	CNN
Manchester SVM	Ground-Based	0.93	0.22	0.35	SVM / Gabor
Manchester-NA2	Ground-Based	0.89	0.00	0.01	Human Inspection
ALL-star	Ground-Based	0.84	0.01	0.02	edges/gradiants and Logistic Reg.
CAST	Ground-Based	0.83	0.00	0.00	CNN / SVM
YattaLensLite	Ground-Based	0.82	0.00	0.00	SExtractor
LASTRO EPFL	Space-Based	0.93	0.00	0.08	CNN
CMU-DeepLens-ResNet	Space-Based	0.92	0.22	0.29	CNN
GAMOCLASS	Space-Based	0.92	0.07	0.36	CNN
CMU-DeepLens-Resnet-Voting	Space-Based	0.91	0.00	0.01	CNN
AstrOmatic	Space-Based	0.91	0.00	0.01	CNN
CMU-DeepLens-ResNet-aug	Space-Based	0.91	0.00	0.00	CNN
Kapteyn Resnet	Space-Based	0.82	0.00	0.00	CNN
CAST	Space-Based	0.81	0.07	0.12	CNN
Manchester1	Space-Based	0.81	0.01	0.17	Human Inspection
Manchester SVM	Space-Based	0.81	0.03	0.08	SVM / Gabor
NeuralNet2	Space-Based	0.76	0.00	0.00	CNN / wavelets
YattaLensLite	Space-Based	0.76	0.00	0.00	Arcs / SExtractor
All-now	Space-Based	0.73	0.05	0.07	edges/gradiants and Logistic Reg.
GAHEC IRAP	Space-Based	0.66	0.00	0.01	arc finder

Table 3. The AUROC, TPR_0 and TPR_{10} for the entries in order of AUROC.

Next challenge in preparation

- Results on real data are deceiving because simulations to too simple
- Next challenge in preparation for the Euclid Bonn meeting in June
 - More realistic galaxies with better colors
 - More complex noise taken from OU-SIM
 - Simulation of lenses with OU-SIM/OU-VIS/OU-NIR pipelines
 - Bypass simulations with noise properties taken from OU-SIM/VIS/NIR pipelines

Conclusion

- Forthcoming imaging surveys cannot be processed by eye anymore
- Machine learning techniques appear as good solutions
 - Drawback: They require large simulated and realistic samples
 - They might learn from real data as more lenses are discovered?