Cosmology

PFS cosmology observe emission-line galaxies (ELG) from HSC over 1400 deg² at 0.6 < z < 2.4

Goals:

- Neutrino mass: Achieve the constraint of Σmv < 0.1 eV, which is important threshold to determine the mass hierarchy of neutrinos
- Dark energy/modified gravity: Constrain the model of dark energy and/or gravity by measuring the distance and the growth rate of structure as a function of redshift
- Investigate tensions between Planck CMB and the largescale structure, and between the low-z and high-z BAO

Cosmology

Dark Matter 27%

Ordinary Matter 5%

Dark Energy?

Cosmology

Neutrino mass:

Achieve the constraint of $\Sigma m\nu < 0.1$ eV, which is important threshold to determine the mass hierarchy of neutrinos

→ Rule out inverted mass hierarchy

 $\Sigma m_v \sim 0.1 \text{ eV}$

Baryonic Acoustic Oscillations

Neutrino forecast

Testing gravity

Testing geometry/DE

PFS will provide joint constraints on f_v and w_0

Dark energy equation of state parameter

Competition

- DESI will observe ELGs as well as the luminous red galaxies (LRGs) at 0.6 < z < 1.6
- Both PFS and DESI is aiming to reach the neutrino mass constraint of Σmv < 0.1 eV
- DESI will start the science run at April 2021 but the survey speed would be slower than PFS

PFS uniqueness

- Only PFS can access z > 1.6 by galaxy samples
- → DESI will explore z > 1.6 with Lyman-alpha forests, which can measure distances but not accurately the linear growth rate
- Only the PFS x HSC do the tomographic analysis of lensing at z > 1.6
- Thanks to the high quality data of HSC, we can construct cleaner and more uniform spectroscopic sample

Front-loading

Front-loading

