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The DEEPDIP ANR

— Deep Learning techniques for SN’s and Photometric redshifts

DEEDIP

LAM : Treyer, Kraljic, de la Torre, Ilbert, Vibert, Gray, Moutard, Picouet, Arnouts
CPPM: Fouchez, Bautista, Lin, Racine, ...
IAP: Bertin, McCracken, Codis, Laigle, Pichon, Dubois

Montpellier: Pasquet (TETIS), Chaumont (LIRRM) ...

—> 2 Postdocs: Katarina Kraljic (LAM) + Julian Bautista (CPPM)
—> ] these ANR-IA: Reda Ait-Ouahmed (LAM +TETIS)

— Science Goals: cosmology with SNs & Cosmic Web analysis

prepare next generation surveys: LSST + Euchd
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— > A large family of Photometric redshift techniques:
— SED fitting needs a small training set for calibration but computationally intensive

— Machine learning (Aritificial Neural Network, kNearest NeigborsN, Random forest, SOM, ... )

very good accuracy when using a large training set

—> One main Limiting factor: input informations based on extracted features

relies on flux extraction which can be sensitive to PSF, neighbors, profile models ...

— > Deep Learning approach:

— no feature extraction. Works at the pixel level !

exploits all the informations (SB, sizes, inclinations, color gradients, neighbors)

— Now under reach thanks to large spec-z samples & GPU power

— Hoyle+16 (60x60 jpeg RGBa images encoding (i1-z,r-1,g-r, r mag), output: PDF)
— d’lsanto & Polester+18: (28x28 ugriz fits images, output: PDF with Gaussian Mixture model)

—> ML + DL :

— limited to the representativity of the training set
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Convolutional Neural Network
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= input . 64X64 ugriz images z=0.258 2=0.039 2=0.094 2=0.163 z=0.078

Input image in 5 channels Feature maps from the 1t

convolution layer
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First steps : convolution blocks

apply convolution kernels to extract

several feature maps

(successive conv. blocks with pooling to
reduce their sizes)
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- Second steps : Fully Connected NN
Final features maps + E(B-V)gal

are inputs for the FC NN Lecun+ 98 | <— Feature Maps —> | <- FC NN ->
C3: f. maps 16@10x10
. INPUT C1: feature maps S4: f. maps
- Last step : classifier . 52t maps N | ur

Output layer is a classifier with bins of 8z
providing a normalized PDF (z= Yk zk.Pk)

| I , | — | Full connection | Gaussian connecti
Convolutions Subsampling Convolutions  Subsampling Full connection

- Training : back propagation

to minimize 28 millions parameters
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*Photometric redshifts with Deep CNN "¢ &,
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—> Protocol with all the training set : Pasquet+ 19
— 5 cross validation samples with : 80% training + 20% testing
+ 6 ensembles (Training set augmented by rotation + Flip of the images)
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— > Better performance than the latest SDSS photo-zs

Pasquet+ 19
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-, ':NéXt challenges with Deep-' S“Wéys- g,
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—> Moving to Higher redshift with Deep imaging surveys
New challenges :

Large redshift range —> large number of classes for training

Smaller and inhomogeneous training set
over/under-represented training set

unbalanced in z
Spectroscopic training set 60,000 z-spec for HSC-CLAUDS

100 12 N(z) for training set
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HiOtéetric redshifts in Deep S.urve{ys + CFHTLS o
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— >Performance at 1<22.5 with CFHTLS - WIDE images
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~ factor 2 improvement vs SED fitting
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- External test with PRIMUS + 3D
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‘conclusion on-CNN photo-z =™

CNN photo-z is a promising approach but we need

—> to better handle under-represented & unbalanced training set

-1- upcoming spectroscopic surveys to improve the training set for DL

(PFS, MOONS, JPASS, WAVE, WFIRST, Euclid, ... ) but not for now ...

-2- develop alternative DL approaches

- dealing with incomplete photometry (mising bands)

. C‘_ea:ing with under represented regions 1n training set : GAN ?

= é-evelop transfer learning from one dataset to another
- find a way to exploit the large number of unlabelled galaxies

- extend analysis to other informations (physical parameters)

—> ANR DEEPDIP: to get ready for LSST+Euchd

Ressources : 5 GPUs installed on Cluster at LAM (need more)
—> collaboration with CESAM welcome
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