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Context/Motivation

Motivation:

e Crater density measures the age of geological units

® Crater morphology traces the impacts history

State-of-the art:

® |nput data: images or digital terrain models (DTMs)

® Most crater identification made manually by geologists

® Some automatic methods proposed but none really adopted

Approach:
= Machine learning to detect crater rims ?
= Mars DTMs (3D mesh) as input




Approach
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Approach

NN Approach:
o “feedforward multilayer perceptron w/supervised learning” [*]

- optimal with 50 neurons (found automatically during training)
- three phases: training, validation, test

- probability of a vector to belong to a class (crater VS non crater)

® in practice ...
- 3 areas (~3600 craters) used for training & validation
- comparison with existing craters catalogs

- implemented in the Matlab “ML toolbox”

[*]N. Kasabov, Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering
(The MIT Press, Cambridge, 1996)




Results

Main result:
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® improved crater detection

- up to 96 % in some areas (!)
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- depends on crater density

- further identification of crater rims (size & location)
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