Automated extraction of crater rims on 3D meshes with an artificial neural network

<u>N. Christoff^{1,2,*}</u>, A. Manolova², J.-L. Mari¹, S. Viseur³, L. Jorda⁴, S. Bouley⁵

¹LIS/AMU, ²UT Sofia (Bulgarie), ³CEREGE/AMU, ⁴LAM/AMU, ⁵GEOPS/UPS

*PhD thesis (2015-2018)

Context/Motivation

Motivation:

- Crater density measures the age of geological units
- Crater morphology traces the *impacts history*

State-of-the art:

- Input data: images or digital terrain models (DTMs)
- Most crater identification made manually by geologists
- Some automatic methods proposed but none really adopted

Approach:

- → Machine learning to detect crater rims ?
- → Mars DTMs (3D mesh) as input

Approach

NN Approach:

- "feedforward multilayer perceptron w/supervised learning" [*]
 - optimal with 50 neurons (found automatically during training)
 - three phases: training, validation, test
 - probability of a vector to belong to a class (crater VS non crater)
- in practice ...
 - 3 areas (~3600 craters) used for training & validation
 - comparison with existing craters catalogs
 - implemented in the Matlab "ML toolbox"

[*]N. Kasabov, Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering (The MIT Press, Cambridge, 1996)

Results

Main result:

- improved crater detection
 - up to 96 % in some areas (!)
 - depends on crater density
 - further identification of crater rims (size & location)

