
Parallel computing at LAM

Jean-Charles Lambert
Sergey Rodionov

Online document : https://goo.gl/n23DPx

Parallel computing LAM - December, 1st 2016

I. General presentation
II. Theoretical considerations

III. Practical work

Outline

Parallel computing LAM - December, 1st 2016

PART I :

GENERAL PRESENTATION

Parallel computing LAM - December, 1st 2016

HISTORY

Parallel computing LAM - December, 1st 2016

Moore’s LAW

Moore’s Law is a computing term which
originated around 1970:

the simplified version of this law states that
processor speeds, or overall processing
power for computers will double every two
years.

The “exact” version says that the number
of transistors on an affordable CPU would
double every two years

Gordon E. Moore

Parallel computing LAM - December, 1st 2016

Transistors (#)

Clock speed (mhz)

Power (watts)

Perf/clock (ilp)

ilp = instruction level parallelism

Moore’s law

Technological WALL

Parallel computing LAM - December, 1st 2016

● Memory Wall : gap between processor speed vs memory speed

● ILP (Instruction Level Parallelism) Wall : difficulty to find enough ILP

● Power Wall : exponential increase of power vs factorial increase of

speed

This is why, we MUST use multiple cores to speed up
computations.

Here comes parallel computing !

Processor speed technological WALL

Technological WALL for increasing operating processor frequency

Parallel computing LAM - December, 1st 2016

Definition :

Parallel computing is the use of two or more
processors (cores, computers) in combination
to solve a single problem

Parallel computing LAM - December, 1st 2016

Three (mains) types of parallelism

Difficulty to implement
● Embarrassing
● Coarse-grained
● Fine-grained

Parallel computing LAM - December, 1st 2016

Work to be done

100 ….
 …..

100 jobs that don’t depend
On each other

Work done 100
times faster

We divide
Work in 100 jobs

One job per worker

Embarrassingly parallel workload

We hire 100 people
(workers)

Parallel computing LAM - December, 1st 2016

Coarse-grained -> ex: Simple queue multiple server

queue
(data)

checkout
(processors)

Centre bourse

Parallel computing LAM - December, 1st 2016

Building a house can be divided in many
jobs

● Fondations
● Plumbing
● Electricity
● Roof

➔ Many jobs can be run in parallel
➔ Some have specific orderings

◆ fondations before electricity

Fine-Grained : Concurrency, synchronisation and communication

Some workers have to wait….

Parallel computing LAM - December, 1st 2016

Why do parallel computing ?
● To get results faster

● Solve problems that don’t fit on a single CPU’s memory space

● Solve problems that can’t be solved in a reasonable time

● Solve larger problems faster

● Run multiple test cases / analysis at the same time

Parallel computing LAM - December, 1st 2016

Millennium-XXL project Project : simulating the Galaxy Population in Dark Energy Universes

● 300 billions particles
● 12000 cpus
● 30 TB RAM
● 100 TB of data products

Equivalent of 300 years of CPU time !!!

Parallel computing LAM - December, 1st 2016

Memory and communication

Parallel computing LAM - December, 1st 2016

Fine grain parallel program design

 Program

Memory (data)

CPU

CPU

CPU

CPU

● same program runs on many CPU
● get data from memory space
● exchange data

Parallel computing LAM - December, 1st 2016

Shared memory

Memory (data)CPU

CPU

CPU

CPU

On your laptop/desktop or in one node of a
computing cluster, memory is shared between all
processors/cores

Parallel computing LAM - December, 1st 2016

Distributed shared memory

CPU

CPU CPU

CPU Memory
(data)

CPU

CPU CPU

CPU Memory
(data)

CPU

CPU CPU

CPU Memory
(data)

CPU

CPU CPU

CPU Memory
(data)

Network

On a computing cluster, memory is distributed
between nodes, along a fast network with low
latency, and shared inside nodes

computing
node

Parallel computing LAM - December, 1st 2016

Parallel API (Application Program Interface)

OpenMP (Open Multi-Processing)
● C,C++ and Fortran language
● Implicit parallelism
● set of compiler directives
● quite easy to implement

○ no big modifications of the code
○ Same workflow

● restricted to shared memory

MPI (Message Passing Interface)
● C,C++,Fortran language, python
● explicit parallelism
● explicit calls (send and receive data)
● hard to implement

○ code must be re written
○ explicit data moving

● shared and distributed memory

Parallel computing LAM - December, 1st 2016

OpenMP vs MPI : a simple example

 Array A[N]

 For i=1 to N
 A [i] = i * 2

Objective :

● split “for” loop

● distribute A[] = i *2 computation among processors

Parallel computing LAM - December, 1st 2016

Sequential version

#define NMAX 100000
int main(int argc, char **argv)
{
 int a[NMAX];

 for (int i = 0; i < NMAX; i++) {
 a[i] = 2 * i;
 }

 return 0;
}

Parallel computing LAM - December, 1st 2016

OpenMP version

#define NMAX 100000
int main(int argc, char **argv)
{
 int a[NMAX];

 for (int i = 0; i < NMAX; i++) {
 a[i] = 2 * i;
 }

 return 0;
}

#pragma omp parallel for
● create as many threads as there are processors
● split up loop iterations among these threads

#pragma omp parallel for

Parallel computing LAM - December, 1st 2016

MPI version
#include <mpi.h> // PROVIDES THE BASIC MPI DEFINITION AND TYPES
#include <stdio.h>
#include <string.h>
#define NMAX 24
#define MIN(a,b) ((a) < (b) ? (a) : (b))

int main(int argc, char **argv) {
 int i, my_rank, partner, size,a[NMAX],chunk,istart,istop;
 MPI_Status stat;

 MPI_Init(&argc, &argv); // START MPI
 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank); // DETERMINE RANK OF THIS PROCESSOR
 MPI_Comm_size(MPI_COMM_WORLD, &size); // DETERMINE TOTAL NUMBER OF PROCESSORS

 chunk=NMAX/size; istart=(chunk*my_rank); istop=MIN(istart+chunk,NMAX);

 for (i=istart; i<istop; i++) // EVERY PROCESSOR COMPUTE ONE CHUNK OF THE ARRAY
 a[i] = 2 * i;

 if (my_rank == 0) { // master GATHER ALL RESULTS
 for (partner = 1; partner < size; partner++){
 istart=(chunk*partner); istop=MIN(istart+chunk,NMAX);
 MPI_Recv(a + istart ,istop-istart, MPI_INT, partner, 1, MPI_COMM_WORLD, &stat);
 }
 for (i=0; i<NMAX; i++)
 fprintf(stderr,"a[%5d] = %8d\n",i,a[i]);
 }
 else { // ALL processors except the master
 MPI_Send(a+istart,istop-istart , MPI_INT, 0,1,MPI_COMM_WORLD);
 }
 MPI_Finalize(); // EXIT MPI
}

Parallel computing LAM - December, 1st 2016

Parallel computing architecture

Parallel computing LAM - December, 1st 2016

Where to get parallel computers ?

● Smartphone (2 to 8 cores)

● Laptop

○ Macbook pro (4 cores i7 2.5Ghz)

○ HP zbook linux (4 cores i7/xeon 2.7Ghz)

● Desktop workstations

○ 10 to 96 cores

● Computing cluster

○ 100 to thousand cores

○ LAM (~ 400 cores)

● GPU (Graphic Processor units)

○ 500 to 4000 shader units (dedicated cores)

TOP of the line Intel processor :

Intel Xeon Processor E7-8890 V4

Lithography : 14 nm
of cores : 24
Recommend customer price : 7200 $

Parallel computing LAM - December, 1st 2016

TOP 500 supercomputers

FLOPS = Floating Operations Per Second

10^17 FLOPS = 100 PetaFlops !!!

Parallel computing LAM - December, 1st 2016

First french supercomputer private (ranked 11)

First french supercomputer public [CINES] (ranked 53)

[CEA/TGCC] (ranked 62)

Parallel computing LAM - December, 1st 2016

LAM’s cluster

Parallel computing LAM - December, 1st 2016

cluster.lam.fr

Connexion platform

batch queue mpi queue

mem queue

216 cores
3-4GB/core

Gigabits network

192 cores
3-4GB/core

Infiniband network

shared

/home

 hermes.lam.fr

LAM CLUSTER
~ 400 cores

parallel jobs
MPI &

MPI+OpenMP
Wall time 2 days

SSHLAM’s LAN

Gigabits/sec Infiniband low latency

sequential jobs
// jobs on one node
Wall time 14 days

10 cores
256GB ram

Wall time 14days

Parallel computing LAM - December, 1st 2016

Job scheduling

LAM cluster is managed by PBS torque (distributed resource manager)

● based on simple shell script
● allocate computational task among available resources

○ rules for requested cpu,ram,walltime
● Submission via qsub command on specific queue

○ qsub -q batch myjob.sh
○ qsub -q mpi myjob.sh
○ qsub -q mem myjob.sh

●
#!/bin/sh
#
#PBS -N MYJOBname
#PBS -l nodes=1:ppn=1 # request 1 node and 1 core
#PBS -l walltime=12:00:00 # 12 hours wall clock time
#PBS -M jean-charles.lambert@lam.fr # mail send to this adress after run completion
#PBS -o “run-log.txt” # standard output redirection
#PBS -e “run-err.txt” # standard error redirection

change to submission jobs directory
cd $PBS_O_WORKDIR
my_program # start my_program

Example : myjob.sh

mailto:jean-charles.lambert@lam.fr

Parallel computing LAM - December, 1st 2016

LAM’s cluster cores occupation (YEAR 2016)

Parallel computing LAM - December, 1st 2016

Parallel programs running at LAM

● Lenstools : gravitational lensing code (OpenMP)

● Gadget3 : nbody simulation program (MPI) massively parallel

● Ramses : nbody simulation program (MPI) massively parallel

● Proto planetary formation : Hybrid OpenMP + MPI program

● Cosmic rays : OpenMP program

● Glnemo2 : 3D visualisation program (GPU shaders)

Parallel computing LAM - December, 1st 2016

System administration and software management
● Thomas Fenouillet
● Jean-Charles Lambert

Hardware support
● Vincent Herero

Parallels code development and advisories
● Sergey Rodionov
● Jean-Charles Lambert

File server management and network
● Julien Lecubin
● Adrien Malgoyre

People behind LAM’s cluster

Parallel computing LAM - December, 1st 2016

LAM’s cluster
EXPANSION

● Increase overall computing power
● Easy to maintain
● Easy to expand

Parallel computing LAM - December, 1st 2016

PART II :

THEORETICALS CONSIDERATIONS

Parallel computing LAM - December, 1st 2016

Parallelization is a brute force “optimization”

- Optimize first!

- Consider using faster algorithm.

- N-body simulations: directs summation O(N^2) vs

tree-code O(N * log(N))

- Use the fastest libraries.

- matrix multiplication: MKL vs naive function

- Python: Code critical part in C/C++.

- Do profiling to find bottleneck.

Parallel computing LAM - December, 1st 2016

Speed-up

T(1)/T(n)/n as function of n

Efficiency

Always make speed-up analysis for your parallel program!

T(1)/T(n) as function of n

Parallel computing LAM - December, 1st 2016

Why real speedup is smaller than theoretical maximum?

1. Parallel Overhead: The amount of time required to coordinate parallel

tasks, as opposed to doing useful work.

● Synchronizations

● Data communications

● Software overhead imposed by parallel languages, libraries,

operating system, etc.

2. Serial components of the program. Parts which have not been

parallelized.

Parallel computing LAM - December, 1st 2016

Amdahl's law

1. A man can do no more than he can.
2. Are we doomed?

p1 - p
Part which we

cannot parallelize

p - fraction of execution time of part which we can parallelize

Parallel computing LAM - December, 1st 2016

Gustafson's law

Observation: when size of the problem growth “parallel part” usually growth
faster than “sequential part”

p1 - psmall N

big N

growth faster

We cannot infinitely speedup a given program.

We can solve more and more complex problems in reasonable time.

Speedup for fixed execution time: bigger number of cores --- bigger N

Parallel computing LAM - December, 1st 2016

Make parallelization on as high level as possible.

for i = 1:1000

 R[i] = fun(i)

end

for i = 1:1000

 R[i] = parallel_fun(i)

end

parallel_for i = 1:1000

 R[i] = fun(i)

end

Smaller number of bigger parallel blocks ==> smaller parallel overhead

Smaller sequential part ==> bigger speed-up

But with smaller blocks might be easier achieve load-balancing

Parallel computing LAM - December, 1st 2016

“Rules of Parallelization”

1. Do you need this program to work faster?

2. Do you need this particular program to work faster? Bottleneck of your

project?

3. Optimize first. Use superiours algorithms and the fastest libraries

4. Make parallelization on as high level as possible.

5. You could violate rules 3 and 4 because of practical reasons.

6. Make speed-up plots.

7. Amdahl's law: speedup_max = 1/(1-p)

8. Gustafson's law: for bigger N speedup can be better

Parallel computing LAM - December, 1st 2016

Types of parallelization (from point of view of “processes”).

❖ Separate processes

- without communication : gnu parallel, cluster batch

- with communication : mpi

Parallel region

Serial Serial

❖ Processes created with “fork” (expensive, but copy-on-write on linux)

- python multiprocessing

❖ Threads (lightweight processes with shared memory)

- We cannot use it in Python directly (GIL)

- openmp for C++/C and FORTRAN

Parallel computing LAM - December, 1st 2016

PART III :

PRACTICAL WORK

Parallel computing LAM - December, 1st 2016

● Connect to lam’s cluster

➢ ssh -l parwork cluster.lam.fr

● Download exercises from gitlab (once connected to cluster)

➢ cd WORKS
➢ mkdir your_username
➢ cd your_username
➢ git clone https://gitlab.lam.fr/srodionov/parallel-computing-practice.git

 (There is a README.txt file with git command in WORKS directory)

Parallel computing LAM - December, 1st 2016

Cluster basic commands

Query commands

● showq : display detailed jobs status (3 categories : running/waiting/blocked)
● qstat : display simplified jobs’s status
● qstat -u jclamber : display jclamber’s jobs status
● qnodes : display nodes’s information
● checkjob jobid: give jobid’s info

Action commands

● qdel jobid: delete joib from the queue
● qsub -q queue mybatch.sh : submit mybatch.sh to the selected queue
● qsub -q mpi mybatch.sh : submit mybatch.sh to mpi queue
● qsub -q batch mybatch.sh : submit mybatch.sh to batch queue
● qsub -t 200 -q batch mybatch.sh : submit 200 mybatch.sh to batch queue

Parallel computing LAM - December, 1st 2016

Portable Batch System (PBS) Torque resource manager : SCRIPT FILE

#!/bin/sh
#
#PBS -N MYJOBname # job’s name seen from qstat command
#PBS -l nodes=1:ppn=1 # request 1 node and 1 core
#PBS -l walltime=12:00:00 # 12 hours wall clock time
#PBS -M jean-charles.lambert@lam.fr # mail send to this adress
#PBS -m abe # sends a mail if job (a)aborted,(b)begins,(e)ends
#PBS -o “run-log.txt” # standard output redirection
#PBS -e “run-err.txt” # standard error redirection

change to submission jobs directory
cd $PBS_O_WORKDIR
my_program # start my_program

Example : myjob.sh

mailto:jean-charles.lambert@lam.fr

Parallel computing LAM - December, 1st 2016

Portable Batch System (PBS) Torque resource manager : ENV VARIABLE

● PBS_O_WORKDIR : specify directory from where script has been submitted

● PBS_NUM_NODES : #nodes requested

● PBS_NUM_PPN : #cores requested per node

● PBS_JOBID : job id number

● PBS_NODEFILE : name of the file containing list of HOSTS provided for the job

● PBS_ARRAYID : Array ID numbers for jobs submitted with the -t flag

Following variables are available within the submitted script

Parallel computing LAM - December, 1st 2016

Gnu parallel

GNU parallel is a shell tool for executing jobs in parallel using one or more computers

- How to run
 cat list_of_jobs | parallel
 cat list_of_parameters | parallel program {}

- “-j” Control number of workers
 seq 0 100 | parallel -j 10 "sleep 1; echo {}"
 seq 0 100 | parallel -j 50% "sleep 1; echo {}"

- “-k” Keep sequence of output same as the order of input.
 seq 0 100 | parallel "sleep 1; echo {}"
 seq 0 100 | parallel -k "sleep 1; echo {}"

Parallel computing LAM - December, 1st 2016

How to parallelize this code?

#matrix multiplication
def mult(A,B):

n = len(A)
C = np.zeros((n,n))
for i in range(n):

 for j in range(n):
 for k in range(n):
 C[i,j] += A[i,k] * B[k,j]

return C

N=5000
A = np.random.rand (N, N)
B = np.random.rand (N,N)
C = mult(A,B)

Parallel computing LAM - December, 1st 2016

Python multiprocessing

from multiprocessing import Pool

def f(x):
 return x*x

p = Pool()
rez = p.map(f, [1,2,3])

High level interface: pool of workers + map

map(f, [1,2,3]) ⇒ [f(1),f(2), f(3)]]

def f(x):
 return x*x

rez = map(f, [1,2,3])

Parallel computing LAM - December, 1st 2016

Python multiprocessing (low level)

Process(target=fun, args=args) start new process and run fun(args) there.

Queue - create queue with put/get functions which are “process save”.

from multiprocessing import Process, Queue

def f(q):
 rez = 2*3*7
 q.put([rez, None, 'hello'])

q = Queue()
p = Process(target=f, args=(q,))
p.start()
print q.get() # prints "[42, None, 'hello']"
p.join()

