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Introduction

SLODAR-type methods aim to recover the vertical turbulence profile from
the cross-correlation of wavefront slope measurements from two guide stars
The turbulence profile is crucial for AO systems with multiple guidestars,
where strong prior information is required to stabilize the tomography problem
SLODAR methods rely on the Kolmogorov/von Kármán models for
turbulence statistics
However, turbulence statistics at the ground can deviate from this model
This issue is emphasised by the fact that often much of the turbulence
strength is located close to the ground
What if we could use the same measurements to both reconstruct the
turbulence profile and infer a model for the ground layer turbulence
simultaneously?
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Introduction

SLODAR is a well-posed problem (fewer unknowns than measurements)
Using inverse problems methods, we can extract more information from the
same measurements
The goal of our method is to simultaneously reconstruct the vertical
turbulence profile of the atmosphere and the power spectral density at the
ground layer
This could be particularly valuable in poor imaging conditions, where better
prior information about the turbulence is needed to offset increased
measurement errors
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Outline of this talk

1 Brief description of SLODAR
2 Solving for PSD with SLODAR
3 Numerical results
4 Open questions
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Crash course to SLODAR

Measurement setup with two LGS
wavefront sensors
Correlation of measurements from
two subapertures (one from each
WFS) gives information about
turbulence at an altitude depending
on the distance between the
subapertures
SLODAR-type methods aim to
reconstruct the vertical turbulence
profile from these correlations
Layer altitudes depend on LGS
altitude H, LGS separation θ, and
subaperture distances dk

LGS 1 LGS 2

hk = dk
dk/H+θ

dk = kD

H

D

ψ
ψ′
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Crash course to SLODAR

Correlation of x-directional slope derivatives for subaperture separation dj :

Corx(dj) =
∑
k

1

D4

(∫
R2

e−2πiξ · (ηkdj−hkθ)Ψ0(ξ)|gxk(ξ)|2dξ
)
ρk

ρk: turbulence strength at layer k
Ψ0(ξ): von Kármán power spectral density, Ψ0(ξ) = 0.0229(|ξ|2 + L−2

0 )−11/6

Collecting the integrals into a matrix Ax (and similarly for y-slopes), we get

b :=

(
bx

by

)
=

(
Ax

Ay

)
ρ =: Aρ

ρ: vector of turbulence strengths ρk at altitudes hk

b: correlations of WFS measurements with different subaperture distances dj

Easy to solve in the least squares sense (e.g. using Matlab’s quadprog):

min
ρ≥0
‖Aρ− b‖22
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Modified SLODAR method

Simple idea: for the ground layer h0 = 0, replace Ψ0 by an unknown PSD Ψ:

ρ0Ψ(ξ) =

Nr−1∑
l=0

ψlfl(|ξ|)

Note: ρ0 included in above definition to avoid nonlinearity
It follows that

Axj0ρ0 =
1

D4

NR−1∑
l=0

(∫
R2

e−2πiξ · η0dj |gxk(ξ)|2fl(|ξ|)dξ
)
ψl

As before, collect the integrals into a matrix B to obtain

b =

(
bx

by

)
=

(
Ax

Ay

)
ρ+

(
Bx

By

)
ψ =: Aρ+Bψ
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Modified SLODAR method

Discretizing the PSD leads to many more unknowns than measurements
The system b = Aρ+Bψ is strongly underdetermined ⇒ inverse problem
Standard methods (e.g. least-squares solution) fail: noise in the measurement
b dominates
Even worse, ψ decays rapidly since it is (close to) a power law
Solution: regularization!
Use prior information to favor solutions resembling a power law
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Modified SLODAR method

Method 1: Parametric Power Law. Seek solutions of the form

ψj(c, γ) = c(r2j + 1/L2
0)−γ

Least-squares solution:

min
ρ,c,γ≥0

‖Aρ+Bψ(c, γ)− b‖22

Regularization by discretization
Nonlinear, but low number of parameters makes it easy to solve
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Modified SLODAR method

Method 2: Tikhonov Regularization. Solve least-squares problem

min
ρ≥0,ψ≥0

‖Aρ+Bψ − b‖22 + β‖Γ(ψ −ψ0)‖22 + β′‖Γ′(ψ −ψ0)‖22

Γ, Γ′ and ψ0 encode our prior information about the unknown PSD ψ
β and β′ control how strongly prior information is enforced

Prior PSD ψ0 given by method 1
Intuition for choosing Γ and Γ′: impose a penalty on the relative error
between ψ and ψ0, and similarly between their derivatives
Easy to solve using quadratic programming
Slightly more complex than method 1, but much more suitable for cases
where true solution is not quite a power law
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Numerical simulations

Simulations using MOST, an AO system simulation toolkit developed at JKU
Telescope diameter 42m

WFSs with 84× 84 subapertures (i.e. D = 0.5m)
LGS separation θ = (7.5, 0), in arcminutes
NL = 61 layers
dk = (k, 0) with k = 0, . . . , 60

H = 90km

hk = kD
kD/H+|θ| ⇒ h0 = 0m, h60 ≈ 12km

Measurements over 50 timesteps
Ground layer PSD discretized by 400 points ri, with rmax = 10
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Numerical simulations

Atmosphere simulated as discrete layers at the altitudes hk used by SLODAR
von Kármán power spectral density given by

Ψ0(ξ) = 0.0229(|ξ|2 + 1/L2
0)−11/6

For ground layer k = 0, we changed the PSD to

Ψ(ξ) = 0.0229(|ξ|2 + 1/L2
0)−1.5732

To test method 2, we also simulated data where three small ”bumps” were
added to the above PSD
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PSD reconstruction with method 1
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Figure: Simulated PSD exponent -1.5732, reconstructed exponent -1.497.
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Turbulence profile reconstruction with method 1
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PSD reconstruction with method 2, using 50 timesteps
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PSD reconstruction with method 2, using 500 timesteps
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Turbulence profile, method 2, using 50 timesteps
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Turbulence profile, method 2, using 500 timesteps
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Open questions

What is a realistic class of models for the ground layer turbulence statistics?
How much does real low altitude turbulence deviate from an isotropic and
homogeneous model?
How much data do we need for a good reconstruction? How quickly/slowly
do the turbulence statistics for the bottom layer change? In other words, do
we have enough time to gather the necessary amount of data?
Could we reliably reconstruct L0 as well?
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THE END

Thank you for your attention!
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