Determining ground layer turbulence statistics using a SLODAR-type method

Jonatan Lehtonen

Joint work with: Tapio Helin (UH) Stefan Kindermann (JKU) Ronny Ramlau (JKU)

Department of Mathematics and Statistics University of Helsinki, Finland

Laboratoire d'Astrophysique de Marseille, March 22, 2017

< 口 > < 同 >

- SLODAR-type methods aim to recover the vertical turbulence profile from the cross-correlation of wavefront slope measurements from two guide stars
- The turbulence profile is crucial for AO systems with multiple guidestars, where strong prior information is required to stabilize the tomography problem
- SLODAR methods rely on the Kolmogorov/von Kármán models for turbulence statistics
- However, turbulence statistics at the ground can deviate from this model
- This issue is emphasised by the fact that often much of the turbulence strength is located close to the ground
- What if we could use the same measurements to both reconstruct the turbulence profile and infer a model for the ground layer turbulence simultaneously?

- SLODAR-type methods aim to recover the vertical turbulence profile from the cross-correlation of wavefront slope measurements from two guide stars
- The turbulence profile is crucial for AO systems with multiple guidestars, where strong prior information is required to stabilize the tomography problem
- SLODAR methods rely on the Kolmogorov/von Kármán models for turbulence statistics
- However, turbulence statistics at the ground can deviate from this model
- This issue is emphasised by the fact that often much of the turbulence strength is located close to the ground
- What if we could use the same measurements to both reconstruct the turbulence profile and infer a model for the ground layer turbulence simultaneously?

- SLODAR-type methods aim to recover the vertical turbulence profile from the cross-correlation of wavefront slope measurements from two guide stars
- The turbulence profile is crucial for AO systems with multiple guidestars, where strong prior information is required to stabilize the tomography problem
- SLODAR methods rely on the Kolmogorov/von Kármán models for turbulence statistics
- However, turbulence statistics at the ground can deviate from this model
- This issue is emphasised by the fact that often much of the turbulence strength is located close to the ground
- What if we could use the same measurements to both reconstruct the turbulence profile and infer a model for the ground layer turbulence simultaneously?

- SLODAR-type methods aim to recover the vertical turbulence profile from the cross-correlation of wavefront slope measurements from two guide stars
- The turbulence profile is crucial for AO systems with multiple guidestars, where strong prior information is required to stabilize the tomography problem
- SLODAR methods rely on the Kolmogorov/von Kármán models for turbulence statistics
- However, turbulence statistics at the ground can deviate from this model
- This issue is emphasised by the fact that often much of the turbulence strength is located close to the ground
- What if we could use the same measurements to both reconstruct the turbulence profile and infer a model for the ground layer turbulence simultaneously?

- SLODAR-type methods aim to recover the vertical turbulence profile from the cross-correlation of wavefront slope measurements from two guide stars
- The turbulence profile is crucial for AO systems with multiple guidestars, where strong prior information is required to stabilize the tomography problem
- SLODAR methods rely on the Kolmogorov/von Kármán models for turbulence statistics
- However, turbulence statistics at the ground can deviate from this model
- This issue is emphasised by the fact that often much of the turbulence strength is located close to the ground
- What if we could use the same measurements to both reconstruct the turbulence profile and infer a model for the ground layer turbulence simultaneously?

- SLODAR-type methods aim to recover the vertical turbulence profile from the cross-correlation of wavefront slope measurements from two guide stars
- The turbulence profile is crucial for AO systems with multiple guidestars, where strong prior information is required to stabilize the tomography problem
- SLODAR methods rely on the Kolmogorov/von Kármán models for turbulence statistics
- However, turbulence statistics at the ground can deviate from this model
- This issue is emphasised by the fact that often much of the turbulence strength is located close to the ground
- What if we could use the same measurements to both reconstruct the turbulence profile and infer a model for the ground layer turbulence simultaneously?

(日) (四) (三)

• SLODAR is a well-posed problem (fewer unknowns than measurements)

- Using inverse problems methods, we can extract more information from the same measurements
- The goal of our method is to simultaneously reconstruct the vertical turbulence profile of the atmosphere and the power spectral density at the ground layer
- This could be particularly valuable in poor imaging conditions, where better prior information about the turbulence is needed to offset increased measurement errors

- SLODAR is a well-posed problem (fewer unknowns than measurements)
- Using inverse problems methods, we can extract more information from the same measurements
- The goal of our method is to simultaneously reconstruct the vertical turbulence profile of the atmosphere and the power spectral density at the ground layer
- This could be particularly valuable in poor imaging conditions, where better prior information about the turbulence is needed to offset increased measurement errors

- SLODAR is a well-posed problem (fewer unknowns than measurements)
- Using inverse problems methods, we can extract more information from the same measurements
- The goal of our method is to simultaneously reconstruct the vertical turbulence profile of the atmosphere and the power spectral density at the ground layer
- This could be particularly valuable in poor imaging conditions, where better prior information about the turbulence is needed to offset increased measurement errors

- SLODAR is a well-posed problem (fewer unknowns than measurements)
- Using inverse problems methods, we can extract more information from the same measurements
- The goal of our method is to simultaneously reconstruct the vertical turbulence profile of the atmosphere and the power spectral density at the ground layer
- This could be particularly valuable in poor imaging conditions, where better prior information about the turbulence is needed to offset increased measurement errors

- Brief description of SLODAR
- Solving for PSD with SLODAR
- Oumerical results
- Open questions

Image: A mathematical states of the state

Measurement setup with two LGS wavefront sensors

- Correlation of measurements from two subapertures (one from each WFS) gives information about turbulence at an altitude depending on the distance between the subapertures
- SLODAR-type methods aim to reconstruct the vertical turbulence profile from these correlations
- Layer altitudes depend on LGS altitude H, LGS separation θ, and subaperture distances d_k

- Measurement setup with two LGS wavefront sensors
- Correlation of measurements from two subapertures (one from each WFS) gives information about turbulence at an altitude depending on the distance between the subapertures
- SLODAR-type methods aim to reconstruct the vertical turbulence profile from these correlations
- Layer altitudes depend on LGS altitude H, LGS separation θ, and subaperture distances d_k

- Measurement setup with two LGS wavefront sensors
- Correlation of measurements from two subapertures (one from each WFS) gives information about turbulence at an altitude depending on the distance between the subapertures
- SLODAR-type methods aim to reconstruct the vertical turbulence profile from these correlations
- Layer altitudes depend on LGS altitude H, LGS separation θ, and subaperture distances d_k

- Measurement setup with two LGS wavefront sensors
- Correlation of measurements from two subapertures (one from each WFS) gives information about turbulence at an altitude depending on the distance between the subapertures
- SLODAR-type methods aim to reconstruct the vertical turbulence profile from these correlations
- Layer altitudes depend on LGS altitude H, LGS separation θ , and subaperture distances d_k

• Correlation of *x*-directional slope derivatives for subaperture separation *d_j*:

$$\operatorname{Cor}^{x}(d_{j}) = \sum_{k} \frac{1}{D^{4}} \left(\int_{\mathbb{R}^{2}} e^{-2\pi i \boldsymbol{\xi} \cdot (\eta_{k} d_{j} - h_{k} \boldsymbol{\theta})} \Psi_{0}(\boldsymbol{\xi}) |g_{k}^{x}(\boldsymbol{\xi})|^{2} d\boldsymbol{\xi} \right) \rho_{k}$$

• ρ_k : turbulence strength at layer k

- $\Psi_0(m{\xi})$: von Kármán power spectral density, $\Psi_0(m{\xi})=0.0229(|m{\xi}|^2+L_0^{-2})^{-11/6}$
- Collecting the integrals into a matrix A^x (and similarly for y-slopes), we get

$$oldsymbol{b} := egin{pmatrix} oldsymbol{b}^x \ oldsymbol{b}^y \end{pmatrix} = egin{pmatrix} oldsymbol{A}^x \ oldsymbol{A}^y \end{pmatrix} oldsymbol{
ho} =: oldsymbol{A}oldsymbol{
ho}$$

- ρ : vector of turbulence strengths ho_k at altitudes h_k
- $m{b}$: correlations of WFS measurements with different subaperture distances $m{d}_j$
- Easy to solve in the least squares sense (e.g. using Matlab's quadprog):

$$\min_{\boldsymbol{\rho} \geq 0} \|\boldsymbol{A}\boldsymbol{\rho} - \boldsymbol{b}\|_2^2$$

• Correlation of *x*-directional slope derivatives for subaperture separation *d_j*:

$$\operatorname{Cor}^{x}(d_{j}) = \sum_{k} \frac{1}{D^{4}} \left(\int_{\mathbb{R}^{2}} e^{-2\pi i \boldsymbol{\xi} \cdot (\eta_{k} d_{j} - h_{k} \boldsymbol{\theta})} \Psi_{0}(\boldsymbol{\xi}) |g_{k}^{x}(\boldsymbol{\xi})|^{2} d\boldsymbol{\xi} \right) \rho_{k}$$

- ρ_k : turbulence strength at layer k
- $\Psi_0(\boldsymbol{\xi})$: von Kármán power spectral density, $\Psi_0(\boldsymbol{\xi}) = 0.0229(|\boldsymbol{\xi}|^2 + L_0^{-2})^{-11/6}$
- Collecting the integrals into a matrix A^x (and similarly for y-slopes), we get

$$oldsymbol{b} := egin{pmatrix} oldsymbol{b}^x \ oldsymbol{b}^y \end{pmatrix} = egin{pmatrix} oldsymbol{A}^x \ oldsymbol{A}^y \end{pmatrix} oldsymbol{
ho} =: oldsymbol{A}oldsymbol{
ho}$$

- ρ: vector of turbulence strengths ρ_k at altitudes h_k
- $m{b}$: correlations of WFS measurements with different subaperture distances $m{d}_j$
- Easy to solve in the least squares sense (e.g. using Matlab's quadprog):

$$\min_{\boldsymbol{\rho} \geq 0} \|\boldsymbol{A}\boldsymbol{\rho} - \boldsymbol{b}\|_2^2$$

• Correlation of *x*-directional slope derivatives for subaperture separation *d_j*:

$$\operatorname{Cor}^{x}(d_{j}) = \sum_{k} \frac{1}{D^{4}} \left(\int_{\mathbb{R}^{2}} e^{-2\pi i \boldsymbol{\xi} \cdot (\eta_{k} d_{j} - h_{k} \boldsymbol{\theta})} \Psi_{0}(\boldsymbol{\xi}) |g_{k}^{x}(\boldsymbol{\xi})|^{2} d\boldsymbol{\xi} \right) \rho_{k}$$

- ρ_k : turbulence strength at layer k
- $\Psi_0(\boldsymbol{\xi})$: von Kármán power spectral density, $\Psi_0(\boldsymbol{\xi}) = 0.0229 (|\boldsymbol{\xi}|^2 + L_0^{-2})^{-11/6}$
- Collecting the integrals into a matrix A^x (and similarly for y-slopes), we get

$$oldsymbol{b} := egin{pmatrix} oldsymbol{b}^x \ oldsymbol{b}^y \end{pmatrix} = egin{pmatrix} oldsymbol{A}^x \ oldsymbol{A}^y \end{pmatrix} oldsymbol{
ho} =: oldsymbol{A} oldsymbol{
ho}$$

- ρ : vector of turbulence strengths ho_k at altitudes h_k
- $m{b}$: correlations of WFS measurements with different subaperture distances $m{d}_j$
- Easy to solve in the least squares sense (e.g. using Matlab's quadprog):

$$\min_{\boldsymbol{\rho} \geq 0} \|\boldsymbol{A}\boldsymbol{\rho} - \boldsymbol{b}\|_2^2$$

• Correlation of *x*-directional slope derivatives for subaperture separation *d_j*:

$$\operatorname{Cor}^{x}(d_{j}) = \sum_{k} \frac{1}{D^{4}} \left(\int_{\mathbb{R}^{2}} e^{-2\pi i \boldsymbol{\xi} \cdot (\eta_{k} d_{j} - h_{k} \boldsymbol{\theta})} \Psi_{0}(\boldsymbol{\xi}) |g_{k}^{x}(\boldsymbol{\xi})|^{2} d\boldsymbol{\xi} \right) \rho_{k}$$

- ρ_k : turbulence strength at layer k
- $\Psi_0(\boldsymbol{\xi})$: von Kármán power spectral density, $\Psi_0(\boldsymbol{\xi}) = 0.0229(|\boldsymbol{\xi}|^2 + L_0^{-2})^{-11/6}$
- Collecting the integrals into a matrix A^x (and similarly for y-slopes), we get

$$oldsymbol{b} := egin{pmatrix} oldsymbol{b}^x \ oldsymbol{b}^y \end{pmatrix} = egin{pmatrix} oldsymbol{A}^x \ oldsymbol{A}^y \end{pmatrix} oldsymbol{
ho} =: oldsymbol{A} oldsymbol{
ho}$$

- ρ : vector of turbulence strengths ρ_k at altitudes h_k
- b: correlations of WFS measurements with different subaperture distances d_j

• Easy to solve in the least squares sense (e.g. using Matlab's quadprog):

$$\min_{\boldsymbol{\rho} \geq 0} \|\boldsymbol{A}\boldsymbol{\rho} - \boldsymbol{b}\|_2^2$$

• Correlation of *x*-directional slope derivatives for subaperture separation *d_j*:

$$\operatorname{Cor}^{x}(d_{j}) = \sum_{k} \frac{1}{D^{4}} \left(\int_{\mathbb{R}^{2}} e^{-2\pi i \boldsymbol{\xi} \cdot (\eta_{k} d_{j} - h_{k} \boldsymbol{\theta})} \Psi_{0}(\boldsymbol{\xi}) |g_{k}^{x}(\boldsymbol{\xi})|^{2} d\boldsymbol{\xi} \right) \rho_{k}$$

- ρ_k : turbulence strength at layer k
- $\Psi_0(\boldsymbol{\xi})$: von Kármán power spectral density, $\Psi_0(\boldsymbol{\xi}) = 0.0229(|\boldsymbol{\xi}|^2 + L_0^{-2})^{-11/6}$
- Collecting the integrals into a matrix A^x (and similarly for y-slopes), we get

$$oldsymbol{b} := egin{pmatrix} oldsymbol{b}^x \ oldsymbol{b}^y \end{pmatrix} = egin{pmatrix} oldsymbol{A}^x \ oldsymbol{A}^y \end{pmatrix} oldsymbol{
ho} =: oldsymbol{A} oldsymbol{
ho}$$

- ρ : vector of turbulence strengths ρ_k at altitudes h_k
- b: correlations of WFS measurements with different subaperture distances d_j
- Easy to solve in the least squares sense (e.g. using Matlab's quadprog):

$$\min_{\boldsymbol{\rho} \geq 0} \|\boldsymbol{A}\boldsymbol{\rho} - \boldsymbol{b}\|_2^2$$

(日) (四) (三)

Modified SLODAR method

• Simple idea: for the ground layer $h_0 = 0$, replace Ψ_0 by an unknown PSD Ψ :

$$\rho_0 \Psi(\xi) = \sum_{l=0}^{N_r - 1} \psi_l f_l(|\xi|)$$

- Note: ρ_0 included in above definition to avoid nonlinearity
- It follows that

$$A_{j0}^{x}\rho_{0} = \frac{1}{D^{4}} \sum_{l=0}^{N_{R}-1} \left(\int_{\mathbb{R}^{2}} e^{-2\pi i \boldsymbol{\xi} \cdot \eta_{0} d_{j}} |g_{k}^{x}(\boldsymbol{\xi})|^{2} f_{l}(|\boldsymbol{\xi}|) d\boldsymbol{\xi} \right) \psi_{l}$$

• As before, collect the integrals into a matrix ${m B}$ to obtain

$$b = egin{pmatrix} b^x \ b^y \end{pmatrix} = egin{pmatrix} A^x \ A^y \end{pmatrix}
ho + egin{pmatrix} B^x \ B^y \end{pmatrix} \psi =: A
ho + B\psi$$

< □ > < 同 > < 国

Modified SLODAR method

• Simple idea: for the ground layer $h_0 = 0$, replace Ψ_0 by an unknown PSD Ψ :

$$\rho_0 \Psi(\xi) = \sum_{l=0}^{N_r - 1} \psi_l f_l(|\xi|)$$

• Note: ρ_0 included in above definition to avoid nonlinearity • It follows that

$$A_{j0}^{x}\rho_{0} = \frac{1}{D^{4}} \sum_{l=0}^{N_{R}-1} \left(\int_{\mathbb{R}^{2}} e^{-2\pi i \boldsymbol{\xi} \cdot \eta_{0} d_{j}} |g_{k}^{x}(\boldsymbol{\xi})|^{2} f_{l}(|\boldsymbol{\xi}|) d\boldsymbol{\xi} \right) \psi_{l}$$

ullet As before, collect the integrals into a matrix ${\boldsymbol B}$ to obtain

$$b = egin{pmatrix} b^x \ b^y \end{pmatrix} = egin{pmatrix} A^x \ A^y \end{pmatrix}
ho + egin{pmatrix} B^x \ B^y \end{pmatrix} \psi =: oldsymbol{A}
ho + oldsymbol{B} \psi$$

• Simple idea: for the ground layer $h_0 = 0$, replace Ψ_0 by an unknown PSD Ψ :

$$\rho_0 \Psi(\xi) = \sum_{l=0}^{N_r - 1} \psi_l f_l(|\xi|)$$

- Note: ρ_0 included in above definition to avoid nonlinearity
- It follows that

$$A_{j0}^{x}\rho_{0} = \frac{1}{D^{4}} \sum_{l=0}^{N_{R}-1} \left(\int_{\mathbb{R}^{2}} e^{-2\pi i \boldsymbol{\xi} \cdot \eta_{0} d_{j}} |g_{k}^{x}(\boldsymbol{\xi})|^{2} f_{l}(|\boldsymbol{\xi}|) d\boldsymbol{\xi} \right) \psi_{l}$$

ullet As before, collect the integrals into a matrix B to obtain

$$oldsymbol{b} = egin{pmatrix} oldsymbol{b}^x \ oldsymbol{b}^y \end{pmatrix} = egin{pmatrix} oldsymbol{A}^x \ oldsymbol{A}^y \end{pmatrix} oldsymbol{
ho} + egin{pmatrix} oldsymbol{B}^x \ oldsymbol{B}^y \end{pmatrix} oldsymbol{\psi} =: oldsymbol{A} oldsymbol{
ho} + oldsymbol{B} \psi$$

< □ > < 同 > < 国

- Discretizing the PSD leads to many more unknowns than measurements
- The system $m{b}=m{A}m{
 ho}+m{B}m{\psi}$ is strongly underdetermined \Rightarrow inverse problem
- Standard methods (e.g. least-squares solution) fail: noise in the measurement *b* dominates
- ullet Even worse, ψ decays rapidly since it is (close to) a power law
- Solution: regularization!
- Use prior information to favor solutions resembling a power law

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Discretizing the PSD leads to many more unknowns than measurements
- The system $b=A
 ho+B\psi$ is strongly underdetermined \Rightarrow inverse problem
- Standard methods (e.g. least-squares solution) fail: noise in the measurement *b* dominates
- ullet Even worse, ψ decays rapidly since it is (close to) a power law
- Solution: regularization!
- Use prior information to favor solutions resembling a power law

< □ > < 同 > < 国

- Discretizing the PSD leads to many more unknowns than measurements
- The system $m{b}=m{A}m{
 ho}+m{B}\psi$ is strongly underdetermined \Rightarrow inverse problem
- Standard methods (e.g. least-squares solution) fail: noise in the measurement *b* dominates
- ullet Even worse, ψ decays rapidly since it is (close to) a power law
- Solution: regularization!
- Use prior information to favor solutions resembling a power law

< □ > < 同 > < 国

- Discretizing the PSD leads to many more unknowns than measurements
- The system $m{b}=m{A}m{
 ho}+m{B}\psi$ is strongly underdetermined \Rightarrow inverse problem
- Standard methods (e.g. least-squares solution) fail: noise in the measurement *b* dominates
- ullet Even worse, ψ decays rapidly since it is (close to) a power law
- Solution: regularization!
- Use prior information to favor solutions resembling a power law

- Discretizing the PSD leads to many more unknowns than measurements
- The system $b = A
 ho + B\psi$ is strongly underdetermined \Rightarrow inverse problem
- Standard methods (e.g. least-squares solution) fail: noise in the measurement *b* dominates
- ullet Even worse, ψ decays rapidly since it is (close to) a power law
- Solution: regularization!
- Use prior information to favor solutions resembling a power law

• Method 1: Parametric Power Law. Seek solutions of the form

$$\psi_j(c,\gamma) = c(r_j^2 + 1/L_0^2)^{-\gamma}$$

• Least-squares solution:

$$\min_{\boldsymbol{\rho}, c, \gamma \geq 0} \|\boldsymbol{A}\boldsymbol{\rho} + \boldsymbol{B}\boldsymbol{\psi}(c, \gamma) - \boldsymbol{b}\|_2^2$$

- Regularization by discretization
- Nonlinear, but low number of parameters makes it easy to solve

• Method 1: Parametric Power Law. Seek solutions of the form

$$\psi_j(c,\gamma) = c(r_j^2 + 1/L_0^2)^{-\gamma}$$

• Least-squares solution:

$$\min_{\boldsymbol{\rho}, c, \gamma \geq 0} \|\boldsymbol{A}\boldsymbol{\rho} + \boldsymbol{B}\boldsymbol{\psi}(c, \gamma) - \boldsymbol{b}\|_2^2$$

- Regularization by discretization
- Nonlinear, but low number of parameters makes it easy to solve

• Method 1: Parametric Power Law. Seek solutions of the form

$$\psi_j(c,\gamma) = c(r_j^2 + 1/L_0^2)^{-\gamma}$$

• Least-squares solution:

$$\min_{\boldsymbol{\rho}, c, \gamma \geq 0} \|\boldsymbol{A}\boldsymbol{\rho} + \boldsymbol{B}\boldsymbol{\psi}(c, \gamma) - \boldsymbol{b}\|_2^2$$

- Regularization by discretization
- Nonlinear, but low number of parameters makes it easy to solve

< □ > < 同 >

$$\min_{\boldsymbol{\rho} \geq 0, \boldsymbol{\psi} \geq 0} \|\boldsymbol{A}\boldsymbol{\rho} + \boldsymbol{B}\boldsymbol{\psi} - \boldsymbol{b}\|_2^2 + \beta \|\boldsymbol{\Gamma}(\boldsymbol{\psi} - \boldsymbol{\psi}_0)\|_2^2 + \beta' \|\boldsymbol{\Gamma}'(\boldsymbol{\psi} - \boldsymbol{\psi}_0)\|_2^2$$

- Γ , Γ' and ψ_0 encode our prior information about the unknown PSD ψ
- β and β' control how strongly prior information is enforced
- Prior PSD $oldsymbol{\psi}_0$ given by method 1
- Intuition for choosing Γ and Γ' : impose a penalty on the relative error between ψ and ψ_0 , and similarly between their derivatives
- Easy to solve using quadratic programming
- Slightly more complex than method 1, but much more suitable for cases where true solution is not quite a power law

(日) (四) (三)

$$\min_{\boldsymbol{\rho} \geq 0, \boldsymbol{\psi} \geq 0} \|\boldsymbol{A}\boldsymbol{\rho} + \boldsymbol{B}\boldsymbol{\psi} - \boldsymbol{b}\|_2^2 + \beta \|\boldsymbol{\Gamma}(\boldsymbol{\psi} - \boldsymbol{\psi}_0)\|_2^2 + \beta' \|\boldsymbol{\Gamma}'(\boldsymbol{\psi} - \boldsymbol{\psi}_0)\|_2^2$$

- Γ , Γ' and ψ_0 encode our prior information about the unknown PSD ψ
- β and β' control how strongly prior information is enforced
- Prior PSD ψ_0 given by method 1
- Intuition for choosing Γ and Γ' : impose a penalty on the relative error between ψ and ψ_0 , and similarly between their derivatives
- Easy to solve using quadratic programming
- Slightly more complex than method 1, but much more suitable for cases where true solution is not quite a power law

$$\min_{\boldsymbol{\rho} \geq 0, \boldsymbol{\psi} \geq 0} \|\boldsymbol{A}\boldsymbol{\rho} + \boldsymbol{B}\boldsymbol{\psi} - \boldsymbol{b}\|_2^2 + \beta \|\boldsymbol{\Gamma}(\boldsymbol{\psi} - \boldsymbol{\psi}_0)\|_2^2 + \beta' \|\boldsymbol{\Gamma}'(\boldsymbol{\psi} - \boldsymbol{\psi}_0)\|_2^2$$

- Γ , Γ' and ψ_0 encode our prior information about the unknown PSD ψ
- β and β' control how strongly prior information is enforced
- Prior PSD ψ_0 given by method 1
- Intuition for choosing Γ and Γ' : impose a penalty on the relative error between ψ and ψ_0 , and similarly between their derivatives
- Easy to solve using quadratic programming
- Slightly more complex than method 1, but much more suitable for cases where true solution is not quite a power law

$$\min_{\boldsymbol{\rho} \geq 0, \boldsymbol{\psi} \geq 0} \|\boldsymbol{A}\boldsymbol{\rho} + \boldsymbol{B}\boldsymbol{\psi} - \boldsymbol{b}\|_2^2 + \beta \|\boldsymbol{\Gamma}(\boldsymbol{\psi} - \boldsymbol{\psi}_0)\|_2^2 + \beta' \|\boldsymbol{\Gamma}'(\boldsymbol{\psi} - \boldsymbol{\psi}_0)\|_2^2$$

- Γ , Γ' and ψ_0 encode our prior information about the unknown PSD ψ
- β and β' control how strongly prior information is enforced
- Prior PSD ψ_0 given by method 1
- Intuition for choosing Γ and Γ' : impose a penalty on the relative error between ψ and ψ_0 , and similarly between their derivatives
- Easy to solve using quadratic programming
- Slightly more complex than method 1, but much more suitable for cases where true solution is not quite a power law

$$\min_{\boldsymbol{\rho} \geq 0, \boldsymbol{\psi} \geq 0} \|\boldsymbol{A}\boldsymbol{\rho} + \boldsymbol{B}\boldsymbol{\psi} - \boldsymbol{b}\|_2^2 + \beta \|\boldsymbol{\Gamma}(\boldsymbol{\psi} - \boldsymbol{\psi}_0)\|_2^2 + \beta' \|\boldsymbol{\Gamma}'(\boldsymbol{\psi} - \boldsymbol{\psi}_0)\|_2^2$$

- Γ , Γ' and ψ_0 encode our prior information about the unknown PSD ψ
- β and β' control how strongly prior information is enforced
- Prior PSD ψ_0 given by method 1
- Intuition for choosing Γ and Γ' : impose a penalty on the relative error between ψ and ψ_0 , and similarly between their derivatives
- Easy to solve using quadratic programming
- Slightly more complex than method 1, but much more suitable for cases where true solution is not quite a power law

• Simulations using MOST, an AO system simulation toolkit developed at JKU

- Telescope diameter 42m
- WFSs with 84×84 subapertures (i.e. $D = 0.5 \mathrm{m}$)
- LGS separation $\boldsymbol{\theta} = (7.5, 0)$, in arcminutes
- $N_L = 61$ layers
- $d_k = (k, 0)$ with k = 0, ..., 60
- *H* = 90km
- $h_k = \frac{kD}{kD/H + |\theta|} \Rightarrow h_0 = 0$ m, $h_{60} \approx 12$ km
- Measurements over 50 timesteps
- Ground layer PSD discretized by 400 points r_i , with $r_{\max} = 10$

Image: A mathematical states and a mathem

- Simulations using MOST, an AO system simulation toolkit developed at JKU
- Telescope diameter 42m
- WFSs with 84×84 subapertures (i.e. $D = 0.5 \mathrm{m}$)
- LGS separation $\boldsymbol{\theta}=(7.5,0)$, in arcminutes
- $N_L = 61$ layers
- $d_k = (k, 0)$ with k = 0, ..., 60
- $H = 90 \mathrm{km}$
- $h_k = \frac{kD}{kD/H + |\theta|} \Rightarrow h_0 = 0$ m, $h_{60} \approx 12$ km
- Measurements over 50 timesteps
- Ground layer PSD discretized by 400 points r_i , with $r_{\max} = 10$

- Simulations using MOST, an AO system simulation toolkit developed at JKU
- Telescope diameter 42m
- WFSs with 84×84 subapertures (i.e. $D = 0.5 \mathrm{m}$)
- LGS separation $\boldsymbol{\theta}=(7.5,0)$, in arcminutes
- $N_L = 61$ layers
- $d_k = (k, 0)$ with k = 0, ..., 60
- *H* = 90km

•
$$h_k = \frac{kD}{kD/H + |\boldsymbol{\theta}|} \Rightarrow h_0 = 0$$
m, $h_{60} \approx 12$ km

• Measurements over 50 timesteps

• Ground layer PSD discretized by 400 points r_i , with $r_{\max} = 10$

Image: A mathematical states and a mathem

- Simulations using MOST, an AO system simulation toolkit developed at JKU
- Telescope diameter 42m
- WFSs with 84×84 subapertures (i.e. $D = 0.5 \mathrm{m}$)
- LGS separation $\boldsymbol{\theta} = (7.5, 0)$, in arcminutes
- $N_L = 61$ layers
- $d_k = (k, 0)$ with k = 0, ..., 60
- *H* = 90km
- $h_k = \frac{kD}{kD/H + |\boldsymbol{\theta}|} \Rightarrow h_0 = 0$ m, $h_{60} \approx 12$ km
- Measurements over 50 timesteps
- Ground layer PSD discretized by 400 points r_i , with $r_{\max} = 10$

◆□▶ ◆冊▶ ◆冨▶

• Atmosphere simulated as discrete layers at the altitudes h_k used by SLODAR • von Kármán power spectral density given by

$$\Psi_0(\boldsymbol{\xi}) = 0.0229(|\boldsymbol{\xi}|^2 + 1/L_0^2)^{-11/6}$$

• For ground layer k = 0, we changed the PSD to

$$\Psi(\boldsymbol{\xi}) = 0.0229(|\boldsymbol{\xi}|^2 + 1/L_0^2)^{-1.5732}$$

• To test method 2, we also simulated data where three small "bumps" were added to the above PSD

Image: Image:

Atmosphere simulated as discrete layers at the altitudes h_k used by SLODAR
von Kármán power spectral density given by

$$\Psi_0(\boldsymbol{\xi}) = 0.0229(|\boldsymbol{\xi}|^2 + 1/L_0^2)^{-11/6}$$

• For ground layer k = 0, we changed the PSD to

$$\Psi(\boldsymbol{\xi}) = 0.0229(|\boldsymbol{\xi}|^2 + 1/L_0^2)^{-1.5732}$$

• To test method 2, we also simulated data where three small "bumps" were added to the above PSD

Image: Image:

• Atmosphere simulated as discrete layers at the altitudes h_k used by SLODAR • von Kármán power spectral density given by

$$\Psi_0(\boldsymbol{\xi}) = 0.0229(|\boldsymbol{\xi}|^2 + 1/L_0^2)^{-11/6}$$

• For ground layer k = 0, we changed the PSD to

$$\Psi(\boldsymbol{\xi}) = 0.0229(|\boldsymbol{\xi}|^2 + 1/L_0^2)^{-1.5732}$$

• To test method 2, we also simulated data where three small "bumps" were added to the above PSD

< □ > < 同 >

PSD reconstruction with method 1

Figure: Simulated PSD exponent -1.5732, reconstructed exponent -1.497.

Turbulence profile reconstruction with method 1

PSD reconstruction with method 2, using 50 timesteps

PSD reconstruction with method 2, using 500 timesteps

J. Lehtonen (UH)

Turbulence profile, method 2, using 50 timesteps

Turbulence profile, method 2, using 500 timesteps

• What is a realistic class of models for the ground layer turbulence statistics?

- How much does real low altitude turbulence deviate from an isotropic and homogeneous model?
- How much data do we need for a good reconstruction? How quickly/slowly do the turbulence statistics for the bottom layer change? In other words, do we have enough time to gather the necessary amount of data?
- Could we reliably reconstruct L_0 as well?

- What is a realistic class of models for the ground layer turbulence statistics?
- How much does real low altitude turbulence deviate from an isotropic and homogeneous model?
- How much data do we need for a good reconstruction? How quickly/slowly do the turbulence statistics for the bottom layer change? In other words, do we have enough time to gather the necessary amount of data?
- Could we reliably reconstruct L_0 as well?

- What is a realistic class of models for the ground layer turbulence statistics?
- How much does real low altitude turbulence deviate from an isotropic and homogeneous model?
- How much data do we need for a good reconstruction? How quickly/slowly do the turbulence statistics for the bottom layer change? In other words, do we have enough time to gather the necessary amount of data?

• Could we reliably reconstruct L_0 as well?

- What is a realistic class of models for the ground layer turbulence statistics?
- How much does real low altitude turbulence deviate from an isotropic and homogeneous model?
- How much data do we need for a good reconstruction? How quickly/slowly do the turbulence statistics for the bottom layer change? In other words, do we have enough time to gather the necessary amount of data?
- Could we reliably reconstruct L_0 as well?

Image: Image:

Thank you for your attention!