Cascaded holographic spectrographs for astronomical applications

advanced modelling and experimental proof

Eduard Muslimov Postdoc, group RnD, LAM

Aix*Marseille

RnD seminars, September 28th 2017

Outline of the talk

- 1. Spectrographs types and the performance trade-off
- 2. Design concept of the cascaded holographic spectrograph
- 3. Early wedge-based design
- 4. Design and modelling of the spectrograph lab prototype
- 5. Experimental proof of thee concept
- 6. Generation 2 multiplexed spectrograph

Spectrographs types

+High throughput +Simple optics -Low spectral resolution And/or

-Narrow working range

+High spectral resolution +Wide spectral coverage -Limited throughput -Complex optics + cross-disperser

Echelle spectrographs

MAIN

TRANSFER-

COLLIMATOR

COLLIMATOR

 \checkmark Light is dispersed to multiple diffraction orders

- \checkmark The orders are separated by a cross-dispersing prism or grating
- ✓ High resolution 2D spectrogram is focused onto detector

The principle

PEPSI spectrograph @LBT

DICHROIC

RED CORR

BEAM SPLITTER RED CAM

CROSSDISP

to 10% (@900 nm).

CORRECTOR

Single grating spectrographs

 \checkmark A single grating working in one (typically +1st) diffraction order is used \checkmark Grism(=grating+prism combination) is used to keep an axial arrangement \checkmark A few exchangeable gratings can be used to cover an extended range

FORS spectrograph @ VLT

Volume-phase holograpms

Top – photo of a LED taken through a typical volume phase holographic grating in the 0th (a) and +1st (b).

Bottom – typical diffraction efficiency curve of a VPH grating

Cascaded spectrograph concept

Left – cascaded holographic spectrograph principle Right – spectrogram format

1st stage design

Wavelength coverage	430-680 nm
Target spectral resolution	~5200-7900
Entrance slit	0.03x1 mm
Collimator&camera	Customized triplet-based lenses 170 mm, F/3.8

Lab prototype optical design

General view of the cascaded spectrograph optical scheme

Wavelength coverage	430-680 nm
Target spectral resolution	~1500-5000
Entrance slit	0.03x1 mm
Collimator&camera	Two identical commercial Tessar-type lenses 135 mm, F/4

Image quality

Left – spot diagrams of the spectrograph (circle diameter is 150 um) Right – instrument functions for 30 um slit

Lab prototype gratings design

Lab prototype modelling (I)

Lab prototype modelling (II)

Total spectrograph throughput spectral dependence

Solid model of the optomechanical design

of the spectrograph prototype:

a) general view; b) detailed view of the alignment mechanism.

Lab prototype assembly

Assembled gratings unit. From left to right: blue, green and red Entire spectrographs prototype with camera attached

Experiments: spectral resolution

blue grating

green grating

red grating

Solar spectrum image Fragments of normalized from left to right:blue, green, and red wavelength-calibrated experimental solar spectra

Band	Best measured resolution	Wavelength, nm
В	4100	500-510
G	2600	544-555
R	3500	572-582

Experiments: throughput (I)

and reconstructed total efficiency of the spectrograph (black solid line).

Experiments: throughput (II)

Prototype throughput in comparison with existing instruments

Shortcomings

Throughput due to the DE curves intersection

- Resolution and DE maxima conditions may contradict each other
- Difficult in alignment
- Reflection losses

 Rearrange the gratings in a red-to -blue order

 Move the complexity fr om the alignment stag e to the manufacturing

Generation 2: multiplexed design

The multiplexed design principle:

Top - Scheme of a possible applic ation of a multiplexed device in GR ISM mode.

Bottom - the possible uncombined efficiencies, peaked in different sp ectral ranges.

* A. Zanutta & M. Landoni, M. Riva, and A. Bianco (Brera Observatry, INAF)

Multiplexed optical design

Optical scheme of the spectrograph with multiplexed disperser

Wavelength coverage	444-607 nm
Target spectral resolution	~5000
Entrance slit	0.034x3 mm
Collimator	Off-the-shelf achromatic doublet 200 mm
Camera	Commercial Canon lens 200 mm, F/2

The multiplexed grism

Diffraction efficiency of the customized VPH gratings (recording in Bayfol™, absorbance ignored)

Grating	Spectral range	Frequency
Blue	444-518 nm	1349
Green	518-605 nm	1147
Red	605-707 nm	980
Prisms – 37.3 ° in fused silica		

Expected performance

Spectral resolution

Optical system throughput

Comparison with generation 1

Feature	Cascaded design		Multiplexed design	
Reflection losses	A lot of surfaces	•••	Single dispersive element	•••
Image lines centering	Independent channels	••	Glued gratings, common prisms	•••
Efficiency/ resolution adjustment	Mutual contradictions		To be aligned once	••
Diffraction efficiency optimization	Calibration and degradation issues (DCG)	•••	Calibrated and stable (photopolymer)	•••
Analytical lines coverage	Blueshift	•••	Perfect	•••
Resolution	Can be constant	••	Decreases in the red direction	••
Manufacturing cost	Very low	•	Slightly higher	•••
Experimental proof	Yes	••	Coming soon	Ş

Prospective installation sites

Other suggestions?

Primary – Zeiss-1000 @ SAO RAS

Prospective – BTA @ SAO RAS

Main mirror diameter	1016 mm
Ritchey - Cretien system:	
Focal length	13.3 m
Nonvignetted field diameter	170 mm = 45 arcmin
Wavelength range	0.3 - 10 mkm
Angular resolution	0.8 arcsec
Tube weight	4.8 tons
Total weight	12 tons
Maximum weight @ Cassegrain focus	96 kg
The limiting stellar mag.	23.5

Main mirror diameter	6.05 m
Focal length	24 m
Light collecting area	25.1 sq.m
Wavelength range	0.3 - 10 mkm
Angular resolution	0.6 arcsec
Angular resolution	0.02 arcsec
Mass of the main mirror	42 tons
Total telescope mass	850 tons
Telescope height	42 m
Dome height	53 m

Objects, which can be studied with the spectrograph:

- LBV stars (Luminous Blue Variables), B[e]-supergiants and WR-stars
- Intermediate mass black holes (IMBHs)
- Faint, photometrically variable magnetic white dwarfs
- Exoplanets

Thank you for your attention!

Coupling with telescope

· · ·	
•	
•	
,	

-	0,000
1	52378
1	35447
1	18516
1	01585
	84654
	67723
	50793
	33862
	16931
	Ø

169308

Top –(a) image slicer design based
on TIR
(b) focal reducer design.

Bottom – simulation of the sliced and scaled image

Gratings fabrication

Equipment for (a) fabrication and (b) testing of VPH gratings at State Inst. Of Applied Optics (Kazan)