Point spread function reconstruction at W.M. Keck Observatory : progress and beyond

Olivier Beltramo-Martin

Aix-Marseille Univ., LAM, A*MIDEX, Extra

November 9th, 2017 - LAM

PSF-R: Scientific motivations

2 Methodology : from telemetry to PSF

The object brightness distribution is convolved with the PSF :

 $\mathsf{Im}=\mathsf{Obj}\otimes\mathsf{PSF}$

Getting the real object properties requires a **deconvolution** process of focal-plane images

What are exactly the needs?

Galactic center

- Aims : measuring astrometry at 0.1 mas accuracy for tracking orbits around the central black hole
- Issue : sources confusion caused by overlapping
- Method : PSF model-fitting

Quasi stellar objects

- Aims : measuring masses of the host galaxy bulge and central black hole to evaluate potential correlation
- Issue : 3-4 order of magnitude on QSO/host galaxy contrast
- Method : PSF subtraction

What are exactly the needs?

Galactic center

- Aims : measuring astrometry at 0.1 mas accuracy for tracking orbits around the central black hole
- Issue : sources confusion caused by overlapping
- Method : PSF model-fitting

Quasi stellar objects

- Aims : measuring masses of the host galaxy bulge and central black hole to evaluate potential correlation
- Issue : 3-4 order of magnitude on QSO/host galaxy contrast
- Method : PSF subtraction

What are exactly the needs?

Galactic center

- Aims : measuring astrometry at 0.1 mas accuracy for tracking orbits around the central black hole
- Issue : sources confusion caused by overlapping
- Method : PSF model-fitting

Quasi stellar objects

- Aims : measuring masses of the host galaxy bulge and central black hole to evaluate potential correlation
- Issue : 3-4 order of magnitude on QSO/host galaxy contrast
- Method : PSF subtraction

What does the PSF look like

Diffraction-limited

PSF characterized by the pupil shape, FWHM = λ/D

Seeing-limited

PSF characterized by the atmosphere seeing, FWHM = λ/r_0

What about the PSF after AO correction ?

- Atmospheric turbulence : Introduce Δ OPD of 1-10 μ m
 - **Deformable mirror** : Restores the wavefront flatness by pushing/pulling on actuators
 - Wavefront sensor : Provides the phase gradient over the pupil
 - Real-time computer : Converts recursively WFS measurements to DM commands

1 PSF-R: Scientific motivations

2 Methodology : from telemetry to PSF

From telemetry to PSF

Generally we have : $\mathsf{PSF}_{\varepsilon} = |\mathcal{F}[P(\mathbf{r}) \exp(i\phi_{\varepsilon}(\mathbf{r}))]|^2$

• Residual phase :

- WFS measurements :
 - $oldsymbol{s} = oldsymbol{G} \phi_{oldsymbol{arepsilon}_{\parallel}} + oldsymbol{\eta} \implies \widehat{\phi}_{oldsymbol{arepsilon}_{\parallel}} = oldsymbol{R} imes oldsymbol{s}$
- Static aberrations : Must be calibrated
- Anisoplanatism : Statistics known from the $C_n^2(h)$ profile and the separation
- Fitting error : Statistics known from the seeing

PSF obtained from the OTF :

$$\mathsf{PSF}_{\varepsilon} = \mathcal{F}^{-1}[\mathsf{OTF}_{\varepsilon}]$$

Residual OTF is expressed from the covariance matrix of the residual phase :

$$\mathsf{OTF}_{\varepsilon}(\boldsymbol{u}/\lambda) = \iint_{\mathcal{P}} \boldsymbol{dr} P(\boldsymbol{\rho}) P(\boldsymbol{r} + \boldsymbol{u}) \times \exp\left(\mathcal{C}_{\varepsilon}(\boldsymbol{r}, \boldsymbol{r} + \boldsymbol{u}) - \mathcal{C}_{\varepsilon}(0, 0)\right)$$

Getting the $\ensuremath{\mathsf{OTF}}/\ensuremath{\mathsf{PSF}}$ is a matter of estimating the covariance of the residual phase

Anisoplanatism effect

Anisoplanatism is produced by altitude turbulence during AO closed-loop operations and caused by the spatial correlation of the residual phase across the field :

- Angular anisoplanatism : phase correlation between two separated cylinders
- Focal anisoplanatism : phase correlation between a cone (LGS) and a cylinder
- Tip-tilt anisoplanatism : angular anisoplanatism on tip-tilt modes only

Olivier Beltramo-Martin (LAM)

PSF elongation

Olivier Beltramo-Martin (LAM)

PSF-R at Keck

PSF elongation

11 / 20

Olivier Beltramo-Martin (LAM)

High-order/tip-tilt modes measured using a LGS/NGS at a different location $\mathcal{C}_{\Delta}(C_n^2(h)) = \mathcal{C}_{\Delta}^{\text{lgs}}(C_n^2(h)) + \mathcal{C}_{\Delta}^{\text{TT}}(C_n^2(h))$

Extrapolating the PSF anywhere in the field requires the knowledge of the $C_n^2(h)$ profile : could be provided by external profiler (MASS/DIMM@Mauna Kea)

Which metrics for evaluating PSF-R ?

How can we evaluate the efficiency of PSF-R? which metrics should we consider?

PSF characteristics

• Strehl ratio - FWHM - Encircled energy - PSF profile - Reconstruction residual

Science estimates

Photo-astrometry accuracy

$$\mathcal{B}(\alpha, \mathsf{PSF}, \boldsymbol{p}) = p(1) \times (\mathsf{PSF}(\alpha_x, \alpha_y) + \mathsf{PSF}(\alpha_x + p(2), \alpha_y + p(3)))$$
$$\varepsilon^2(\boldsymbol{p}) = \left| \left| \mathcal{B}(\alpha, \mathsf{PSF}_\varepsilon, \boldsymbol{p}_{\mathsf{ref}}) - \mathcal{B}\left(\alpha, \mathsf{PSF}_\varepsilon, \boldsymbol{p}\right) \right| \right|_2^2$$

NGSs results

NGSs results

Residual	Units	Bias (R. vs G.)	1- σ std		
SR	pts	1.4	4		
FWHM	VHM mas	2.4	2.8		
Photo	mag	0.01/0.75	0.08/0.74		
Astro	mas	1.5/2.5	3.9/5.5		

Olivier Beltramo-Martin (LAM)

PSF-R at Keck

LGSs results

LGSs results

Residual	Units	Bias (R. vs G.)	$1\text{-}\sigma$ std	
SR	pts	-0.13	2.7	
FWHM	mas	3.5	14.4	
Photo	mag	-0.13/0.57	0.15/0.61	
Astro	mas	2.05/7.6	2.8/8.0	

Olivier Beltramo-Martin (LAM)

PSF-R at Keck

2 Methodology : from telemetry to PSF

Tracking the anisoplanatism from focal-plane images

Seeing limited

Seeing is measurable from focal-plane PSF FWHM

AO-correction

 $\bigcup_{n=1}^{n} C_n^2(h) \text{ profile is measurable from focal-plane PSF morphology}$

Classical PSF-R

- Reconstruct the on-axis PSF from the telemetry
- Grab the $C_n^2(h)$ profile from an external profiler
- Extrapolate the PSF off-axis from an anisoplanatism model

Errors on anisoplanatism model and $C_n^2(h)$ estimation generate reconstruction deviations

Focal Plane Profiler

- Reconstruct the on-axis PSF from the telemetry
- Pre-compute normalized $(C_n^2(h) = 1)$ C_{Δ} and Fitting/Aliasing PSDs
- Model-fit the $C_n^2(h)$ by minimizing difference PSF model/observations

₽

Errors on anisoplanatism model are compensated and the $C_n^2(h)$ profile is estimated from focal-plane images

Application to the HeNOS bench off-axis

	LGS On-axis		LGS 2		LGS 3		LGS 4					
	Ref	PSFR	FPP	Ref	PSFR	FPP	Ref	PSFR	FPP	Ref	PSFR	FPP
FWHM	21.1	22.6	22.6	116.6	97	112	90	80	93	100	77	91

	ro	$fr_0(1)$	fr ₀ (2)	fr ₀ (3)	
Ref	82.97 cm	74.3%	17.4%	8.2%	
Fitted	$82.88 \text{ cm} \pm 2.07$	68.10%±4.5	23.35%±2.7	8.5%±1.2	

• PSF-R 4 Science

- GC : estimate photo-astrometry in crowded field to get stars orbits around the BH
- $\circ~$ QSO : subtract the PSF to reveal the host galaxy and obtain galaxy/SMBH masses
- $\circ~$ PSF-R : provide the AO-compensated PSF from telemetry + models + calibrations

• Results on Keck in NGS/LGS mode

- Preliminary results : reconstruction in on-axis NGS/LGS with 3 pts/10 mas of accuracy on Strehl/FWHM
- $\circ~0.1 mag/2~mas$ -ish of accuracy on photometry/astrometry
- Next step : getting a better evaluation of the photo-astrometry accuracy through StarFinder

• Focal plane profiler

- $C_n^2(h)$ retrieval from the AO-compensated focal plane images
- \circ Successfully applied to HeNOS : error FWHM 20%- > 5%
- Next step : test FPP on NIRC2/OSIRIS images to compare with MASS/DIMM

• PSF-R 4 Science

- GC : estimate photo-astrometry in crowded field to get stars orbits around the BH
- $\circ~$ QSO : subtract the PSF to reveal the host galaxy and obtain galaxy/SMBH masses
- $\circ~$ PSF-R : provide the AO-compensated PSF from telemetry + models + calibrations

• Results on Keck in NGS/LGS mode

- Preliminary results : reconstruction in on-axis NGS/LGS with 3 pts/10 mas of accuracy on Strehl/FWHM
- 0.1mag/2 mas -ish of accuracy on photometry/astrometry
- Next step : getting a better evaluation of the photo-astrometry accuracy through StarFinder

• Focal plane profiler

- $C_n^2(h)$ retrieval from the AO-compensated focal plane images
- \circ Successfully applied to HeNOS : error FWHM 20%- > 5%
- Next step : test FPP on NIRC2/OSIRIS images to compare with MASS/DIMM

Thank you!