

3D PRINTING FOR ASTRONOMICAL MIRRORS

CNRS- LAM: Mélanie ROULET, Emmanuel HUGOT, Marc FERRARI UK-ATC: Carolyn ATKINS, Hermine SCHNETLER

Marseille, 13 octobre 2017

erc

2

Summary

Chapter 0: Astrophysics missions context

Chapter I: Off axis parabolas

Chapter II: Lightweight mirrors

Conclusion

-European Extremely Large Telescope (Visible, images 16x sharper than Hubble)

4

erc

Context

WFIRST 2024

- " Infrared telescope
 - Ice & gas giant exoplanet
 - " Galaxies near Big Bang
- ″ Size : D=2.4m

- "X-ray telescope
 - " Invisible drivers of galaxies
 - " Dawn of black holes
- " Size : L=12m, D=4.5m

50x more sensitive than Chandra launched in 1999

Objectives

1. WFIRST telescope (LAM):

- Stress polishing of mirrors for exoplanet imaging
- " Off axis parabolas FEA Simulation & optimization
- " Warping harness design
- 2. LYNX x-ray surveyor (UK ATC):
 - 3D printing and lightweight / high precision structures
 - " Comparison of the 3D printing process and material
 - [~] Properties of lightweight structure in 3D printing
 - " Study the feasibility of substrates polishing

erc

erc

6

Context

"Requirements

["] Large collecting area

"High resolution

" Active optics

Tools

" 3D printing

" Topological optimisation

" Low weight

" Polishing process

a) Lightweight hexagonal cell pattern

a) Optimized topology

b) Verification model

b) Dimension of the unit hexagonal cel

[Unit: mm]

7

CHAPTER 1: OFF AXIS PARABOLAS

Stress polishing of off axis parabolas

Stress polishing principle

Into the inverse form you want to reach

Step II: Spherical grinding/polishing

Using full size tools and Imprint the warping function

Step III: Removal of the loadsGet your aspherical surface at rest

Gain: High quality surfaces Easy manufacturing → Perfectly suited for High contrast imaging

erc

Astigmatism mirror

" Method

- " Boundary conditions
 - Two pairs of opposite forces
 - " Center attachement
- " Material : Zerodur
 - ″ E= 90600MPa

erc

BORATOIRE D'ASTROPHYSIOUE

WFIRST Coronagraphic instrument

LAM ABORATOIRE D'ASTROPHYSIQUE

WFIRST Coronagraphic instrument

LAM ABORATOIRE D'ASTROPHYSIQUE

erc

WFIRST-CGI OAPs

WFIRST CGI					
Optics	Diameter	Roc (BFS)	OAD	Astm3	Coma3
OAP1	58	1180 (1188,3)	140	-1002	-117
OAP2	58	1360 (1369,5)	161,36	-870	-88
OAP3	58	2032 (2046)	240	-577	-39
OAP4	30	864 (870,7)	102	-363	-30
OAP5	30	1270 (1274,7)	110	-134	-10
OAP6	30	1270 (1274,7)	110	-134	-10
OAP7	30	2200 (2209)	200	-85	-3,6
OAP8	30	550 (552,3)	50	-340	-58,5

Roc: Radius of curvature BFS: Best Fit Sphere OAD = Off Axis Distance Astm3 : amount of Astigmatism in nm RMS Coma 3: Amount of Coma in nm RMS

WFIRST-CGI - OAPS SHAPES

Astm3 Coma3

- Challenges in terms of surface quality
- Most difficult are OAP1&8

LAM BORATOIRE D'ASTROPHYSIQUE

15

Astigmatism + Coma mirror

- " Requirement
 - Shape of WFIRST mirrors: Astigmatism and Coma
 Break the symmetry
- "Result with FEA

Boundary condition

- " Two pairs of opposite forces
- " Clamped center
- " Parametric study
 - " Cannot be disclosed ©

erc

16

Astigmatism + Coma mirror

"Requirement

Shape of WFIRST mirrors: Astigmatism and Coma

→ Design under patent

" Result with FEA

Boundary condition

- " Two pairs of opposite forces
- " Clamped center

" Parametric study

" Cannot be disclosed ©

LAM

Add wedge to avoid Trefoil y

Decrease the thickness

erc

3D printing application

CHAPTER 2: LIGHTWEIGHT MIRRORS

3D printing of lightweighted structures & mirrors

19

Honeycomb and Arch design

- "Honeycomb design
 - " Usual in lightweight structure
 - Mechanical manufacturing

" Arch design

- " New lightweight structure
- " Manufacture by 3D printing

20

Honeycomb and arch design

"FEA simulations

- Boundary conditions
 - " Pressure on one face 3500Pa
 - " Base attachment

Material : AluminiumE= 70000 MPa

The second of th

Boundary conditions

Compare the maximum displacement of the models

Honeycomb design

" Volume 35,0%

" Max displacement -23,8nm

" Volume 34,8%

Arch design

" Max displacement -15,7nm

Arch design is a better option in terms of displacement

erc

3D printing methods

Stereo-lithography

TORATOIRE D'ASTROPHYSIA DE LUTYSIA

Using photo-polymerization
 Liquid resin (Plastics)

Selective Laser Sintering

Using sintering method
 Polymer (Nylon, polystyrene)
 Metal (Steel, titanium, alloy mixture)
 Composite

erc

Material and post polishing process

Glass filled Nylon

Composite material White and slightly porous E = 3,2 Gpa CTE = 68 ×10⁶/°C

Bluestone

Plastic with Ceramic qualities New composite material E = 7,6 GPa CTE = 33-44 ×10⁶/°C

AlSi10Mg

Aluminum alloy Excellent machinability E = 64 Gpa $CTE = 21 \times 10^{6}/^{\circ}\text{C}$

Increasing the polishing quality

Polishing state	Raw	Sanded	Skim	Blasted	Pure Ni coating	NiP coating
AlSi10Mg	Х			Х		Х
Bluestone	Х	Х	Х	Х	Х	
Glass filled Nylon	Х				Х	

"Bluestone Stereo-lithography

"AISi10Mg Metal Laser Sintering

25

erc

Microscope imaging

Position of the samples during manufacturing impact the precision and the surface quality

Bluestone raw

Arch measurement

" Microscope interferometer

" Surface measurement

" 3 measurements per direction

Microscope imaging

erc

Raw samples - surface profile

LAM ABORATOIRE D'ASTROPHYSIQUE

28

Fourier analysis - Spatial frequencies

29

30

erc

Fourier filtering result

Comparison and impact of the filtering

ABORATOIRE D'ASTROPHYSIQUE DE MARSLIV

Comparison and impact of the filtering

ABORATOIRE D'ASTROPHYSIQUE DE MARSLIV

Comparison and impact of the filtering

LAM ABORATOIRE D'ASTROPHYSIQUE DE MARSEULE

X

Result: Optimum shape for the given forces ▲ Should be printable

Conclusion

Future work

Optimize the warping harness Find the solution by varying the parameters Create the 3D printing prototype Test and measure on the prototype

Improve the substrate surface quality Try new optimized lightweight structure Measure the new samples

Conclusion

Future work

Optimize the warping harness Find the solution by varying the parameters Create the 3D printing prototype Test and measure on the prototype

" Improve the substrate surface quality Try new optimized lightweight structure Measure the new samples

Questions?

37