- The AO modes for HARMONI -From Classical to Laser-assisted tomographic AO systems

Thierry Fusco, Carlos Correia, Kjetil Dohlen, Leonardo Blanco, Kacem El Hadi, Jean-François Sauvage, Noah Schwartz, Yoshito Ono, Emmanuel Hugot, Jean-Luc Gach, Pascal Vola, Sandrine Pascal, Marc Llored, Olivier Martin, Arthur Vigan, Benoit Epinat, Céline Péroux, Alexis Carlotti, Olivier Groussin, Anne Costille, Florence Roman, David LeMignant, Cyril Petit, Benoit Neichel

Outline –

- General presentation of the E-ELT
- HARMONI
 - General overview
 - Science cases
 - The two AO systems
 - Single Conjugate AO (SCAO)
 - Laser Tomography AO (LTAO)

Five-mirror design — Three-mirror on-axis + two fold mirrors used for adaptive optics

M1 = 39 m (798 hexagonal 1.4 m mirror segments)

M2 = 4m

M3 = 3.75m

M4 = 2.40m (deformable mirror) - 5806 actuators

M5 = 2.6m (TT mirror)

Five-mirror design — Three-mirror on-axis + two fold mirrors used for adaptive optics

Cerro Armazones: 3060-metres high mountain in the central part of Chile's Atacama Desert, about 20 kilometres from Cerro Paranal, home of ESO's Very Large Telescope.

eso1716 — Organisation Release

First Stone Ceremony for ESO's Extremely Large Telescope

Start of ELT dome and telescope construction

26 May 2017

Gain en résolution x 5 Gain en sensitivity x 5⁴

First light instruments

MICADO	Spectro-imageur NIR	Galactic center High-z galaxies
Mετis	Spectro-imageur MIR	Planet & disks High-z galaxieS
HARMONI	IFU Visible - NIR	Stellar pop. High-z galaxies

Gain in resolution x 5 Gain in sensitivity x 5⁴

First light ELT instrument

HARMONI = High Angular Resolution - Monolithic - Optical and Nearinfrared - Integral field spectrograph

First light ELT instrument

<u>Workhorse instrument</u> - visible and near-infrared spectroscopy (0.5–2.4 μm) <u>Integral Field Spectrograph</u> – providing ~ 30 000 spectra per exposure

http://harmoni2015.physics.ox.ac.uk/programme.php

Planet and Stars

Stars and galaxies

Galaxies and cosmology

http://harmoni2015.physics.ox.ac.uk/programme.php

- Direct detection of exoplanets via HC
- Indirect detection with radial velocity
- Circumstellar disks
- Young clusters and IMFs

- Extragalactic resolved stellar population
- High-z dynamical masses / kinematics / chemical composition / Modes of star formation

40mas HARMONI

- Detecting the formation of MW like galaxies at z=10.
- Pop III the first stars
- Detect first enrichment of IGM
- What re-ionised the Universe?

HARMONI = 3 resolving powers

Bands	Wavelengths (µm)	R
"V+R" or "l+z+J" or "H+K"	0.45-0.8, 0.8-1.35, 1.45-2.45	~3000
"l+z" or "J" or "H" or "K"	0.8-1.0, 1.1-1.35, 1.45- 1.85, 1.95-2.45	~7500
"Z" or "J_high" or "H_high" or "K_high"	0.9, 1.2, 1.65, 2.2 (TBD)	~20000

HARMONI = 4 spatial scales

HARMONI = 4 spatial scales

UNIVERSITY OF

OXFORD

RAL Space

CSIC

ONERA

HARMONI Consortium

Partner	Associate Partner	Responsibilities
University of Oxford	STFC – RAL Space	Spectrographs & Obs. Prep
STFC – UK ATC Edinburgh	Univ. of Durham	Cryostat, AIV, Rotator, LTAO
IAC, Tenerife		Pre-optics & Electronics
CSIC – CAB (INTA), Madrid		Calibration & Sec. guiding
CRAL, Lyon	IPAG, Grenoble IRAP, Toulouse	IFU & Software
LAM, Marseille	ONERA, Paris IPAG, Grenoble	SCAO, LTAO, High Contrast

HARMONI HARMONI, SCAO & LTAO implementation

HARMONI, SCAO & LTAO implementation

Nasmyth Platform

HARMONI, SCAO & LTAO implementation

Nasmyth Platform

HARMONI, SCAO & LTAO implementation

Nasmyth Platform

HARMONI, SCAO & LTAO implementation

HARMONI, SCAO & LTAO implementation

SCAO system baseline is to use a pyramid WFS:

UK Astronomy Technology Centre

SCAO system baseline is to use a pyramid WFS

Better performance & better sensitivity

CSIC

SCAO system baseline is to use a pyramid WFS

Better performance & better sensitivity

ONERA

THE FRENCH AEROSPACE

SCAO system baseline is to use a pyramid WFS

- Better performance & better sensitivity
- Managing the "Island" effect

CSIC

RAL Space

ONERA

THE FRENCH AEROSPACE I

UK Astronomy Technology Centre

SCAO system baseline is to use a pyramid WFS

- Better performance & better sensitivity \succ
- Managing the "Island" effect

CSIC

THE FRENCH AEROSPACE

SCAO system baseline is to use a pyramid WFS

- Better performance & better sensitivity
- Managing the "Island" effect

SCAO system baseline is to use a pyramid WFS

- Better performance & better sensitivity
- Managing the "Island" effect

Small modulation provides information on what's behind the spider

+ Secret ingredient See Noah Schwartz talk on Friday

SCAO system baseline is to use a pyramid WFS

- Better performance & better sensitivity
- Managing the "Island" effect

Small modulation provides information on what's behind the spider

See Noah Schwartz AO4ELT5

SCAO will provide a SR of >70% in K-band

High Contrast :

Spectral characterization of young Jupiters around nearby stars in H & K bands at R=3000-20000, with **a 10-6 contrast at 200mas**.

Shaped pupil transmission

From A. Carlotti, A. Vigan, D. Mouillet, M. Bonnefois

HARMONI SCAO

High Contrast :

Simulated data of 4 planets w/ 10-6 planets contrast & 51 Eri b-like synthetic spectrum (2h exp. with H=6 star).

HARMONI

HARMONI, SCAO & LTAO implementation

Ask P. Vola, S. Pascal, K. Dohlen for more details on the opto-mechanical design !

HARMONI

HARMONI, SCAO & LTAO implementation

HARMONI LTAO: Main Objective = provide sky coverage to HARMONI !

Sky Coverage at South galactic Pole

Adaptive Optics

Wave-Front Sensor

Anisoplanatism

High atmosphere's layers are not sensed when looking off-axis

Anisoplanatism

Anisoplanatism

Tomography

High atmosphere's layers are not sensed when looking off-axis

Solution => Combine off-axis measurements

Tomography

How many Guide Stars are available ?

Impact of LGS constellation

cience & Technology Facilities Council UK Astronomy Technology Centre

Sensing on LGS

Dealing with spot elongation

Dealing with spot truncation

Dealing with spot truncation

HARMONI

HARMONI, SCAO & LTAO implementation

LGSWFS

Ask P. Vola, S. Pascal, K. Dohlen for more details on the opto-mechanical design !

Conclusion: HARMONI schedule -

Conclusion: HARMONI schedule -

2024: integration at the telescope

2024: 1st light !

Dr. Frans Snik

Thierry Fusco, Carlos Correia, Kjetil Dohlen, Leonardo Blanco, Kacem El Hadi, Jean-François Sauvage, Noah Schwartz, Yoshito **Ono, Emmanuel Hugot, Jean-Luc Gach, Pascal** Vola, Sandrine Pascal, Marc Llored, Olivier Martin, Arthur Vigan, Benoit Epinat, Alexis Carlotti, Céline Péroux, David Le Mignant, **Olivier Groussin, Anne Costille, Florence Roman, Cyril Petit**

Extra-Slides

Sensing on NGS

Main offender is the telescope Windshake

But windshake is isoplanatic: we can use the telescope WFS to reduce it

Sensing on NGS

Jitter control strategy:

- Use "bright but far" stars to compensate windshake with telescope WFS
- Use "faint but close" star to compensate atmospheric jitter

Sensing on NGS

Jitter control strategy:

- Use "bright but far" stars to compensate windshake with telescope WFS
- Use "faint but close" star to compensate atmospheric jitter

See Carlos Correia poster on Thursday

Sensing on NGS

HARMONI LTAO

See Carlos Correia poster on Thursday

Sensing on NGS

The NGS strategy fulfills the science requirements for all observations