

CURVED DETECTORS : CHARACTERISATION AND NOISE PROPERTIES

Simona Lombardo, Thibault Behaghel, Wilfried Jahn, Eduard Muslimov, Emmanuel Hugot

R&D seminar, February 1st 2018

WIDE FIELD ASTRONOMY

Wide field optical system (typically Schmidt designs): observation of transients, planets, ...

CURVED FOCAL PLANES

Additional field flatteners

Kepler focal plane, 42 flat CCDs

WIDE FIELD ASTRONOMY

Wide field optical system (typically Schmidt designs): observation of transients, planets, ...

CURVED FOCAL PLANES

atteners

Kepler focal plane, 42 flat CCDs

CURVED DETECTORS DEVELOPMENT

A new way of solving the problem

Microsoft 2017

Sony 2014

Many advantages:
smaller and more compact systems
better throughput

LAM/CEA Leti 2017

MESSIER: EXAMPLE FOR ASTRONOMY

Observing ultra-low surface brightness objects (35 mag/arcsec2)

Springel, 2015

0.5m f/8.1 Martinez Delgado et al. 2008

MESSIER: EXAN

REQUIREMENTS: 1. Low PSF wings

2. No refractive surfaces (low UV background)

Pathfinder design

FISHEYE OBJECTIVE: COMMERCIAL APPLICATION

Slide from Wilfried Jahn's PhD talk

FISHEYE OBJECTIVE: COMMERCIAL APPLICATION

Slide from Wilfried Jahn's PhD talk

Concave sensor R = 150-345 mm

FISHEYE OBJECTIVE: COMMERCIAL APPLICATION

Unit 1

Slide from Wilfried Jahn's PhD talk

Concave sensor R = 150-345 mm

FISHEYE OBJECTIVE: PERFORMANCES

Parameters	A	C VS Canon objective		
Sensor radius	150 - 343 mm concave	280 mm convex flat		
FoV	134° - 84°	175°		
Focal range	8.5 - 14.7 mm	8.2 - 15.1 mm		
Aperture	4.2	4.2		
Image size [mm]	22 mm diagonal	24 - 44 mm diagonal		
Number of lenses	9	11 14		
Number of materials	3	7 11		
Aspherical surface	No	No Yes		
Vignetting off-axis	10 %	No 50 %		

Jahn et al., 2018 (in prep.)

AMAZING PICTURES A

MANY DETECTORS PRODUCED

CMOSIS CMV20000, 5120x3840 pixels of 6.4 um

MANY DETECTORS PRODUCED

WE WANT TO KNOW THEIR PERFORMANCES

CHARACTERISATION

WHAT DOES CHARACTERISATION MEAN?

Evaluation of the characteristic noise components and dark current impact.

Evaluation of the conversion factor between digital number (DN) and number of electrons that originated it (gain DN/e⁻).

TYPICAL QUANTITIES

TYPICAL NOISE EQUATION

The noise variance on each pixel is:

WHAT IS THE DARK CURRENT?

Due to thermal agitation of electrons.

Depends on temperature

Have to be **stable** within 1°C during characterisation

HOW TO MEASURE THE DARK CURRENT

RECIPE: Expose in the darkness for different exposure time

 $S_{tot} = m t_{exp} + S_{off}$

fit this relation

The dark current is the slope m.

HOW TO MEASURE THE DARK CURRENT

We always acquire 30 images and compute the median image $S_{tot} = m t_{exp} + S_{off}$ 170 y=x*62.011+118.355 160 Mean Dark(DN) 150 140 130 120 Concave 1 110 0.0 0.2 0.6 0.8 0.4 Exposure time (s) 9

HOW TO MEASURE THE TEMPORAL NOISE

HOW TO ESTIMATE THE GAIN

 $s_{tot}^2 = k^2 s_r^2 + k^2 N_e = const + k(S_{tot} - S_{off})$

Temporal noise variance vs signal = linear relation

SET-UP USED

SET-UP USED

Light baffle

20s integration

SET-UP USED

LABORATOIRE D'ASTROPHYSIQUE DE MARSEILLE

Light baffle

20s integration

1.3s integration

HOW TO ESTIMATE THE GAIN

HOW TO ESTIMATE THE RON

 $s_{tot^2} = const + k(S_{tot} - S_{off})$

HOW TO ESTIMATE THE RON

 $S_{tot}^2 = const + k(S_{tot} - S_{off})$

EXAMPLE RESULTS: RON MAP COMPARISON

 $RON = 10 e^{-1}$

 $RON = II e^{-1}$

VERY SIMILAR PERFORMANCES

RESULTS FOR ALL OF THEM

	Flat	Concave 1	Convex x3y2	Convex x4y2	Concave x2y3
Radius (mm)	no	150	280	280	150
Bias (e⁻)	605.7 <u>+</u> 23.4	623.0 +-24.0	6 44.0 <u>+</u> 25.3	600.9 <u>+</u> 24.4	608.4 <u>+</u> 23.2
Dark current (e ⁻ /s)	249.6 <u>+</u> 1.9	310.0+3.5	330.0 <u>+</u> 4.2	194.3 <u>+</u> 0.8	199.4 <u>±</u> 0.9
Gain (DN/e ⁻)	0.220 <u>+</u> 0.003	0.200 <u>+</u> 0.002	0.214 <u>+</u> 0.003	0.210 <u>+</u> 0.002	0.190 <u>+</u> 0.002
RON (e⁻)	11	10	9	10	10
Saturation (DN)	4095	4095	4095	4095	3951
Dynamic range (dB)	64.74	66.26	66.61	66.03	66.48

Noticed that: many saturated columns and fixed specific 2D pattern for high exposure time

CONCLUSIONS AND NEXT STEPS

Curved detectors have similar characteristics to the flat ones (noise, gain, dynamic range, ...)

NO CLEAR PERFORMANCE DEGRADATION IN THE CURVING PROCESS

- Process for industrial manufacturing of curved detectors is moving forward
- Possible developments toward tunable radius of curvature
- Demonstrate their potential in wide field astronomy (MESSIER, ...)

THANK YOU!

