

3D metrology inside a vacuum chamber with a laser tracker for NISP test campaign

A. Costille, F. Beaumont, E. Prieto, M. Carle, C. Fabron Symetrie company for all tests with the mechanical standard

GRD seminar 08/02/2018

- 1. EUCLID mission and NISP instrument
- 2. NISP performance test campaign Goal and description of ERIOS configuration Description of the hardware and GSEs for NISP TB/TV
- 3. Metrology needs for NISP TB/TV
- 4. Metrology verification plan
- 5. Test campaign results

- EUCLID mission: scientific goals
 - Study of the dark matter distribution and the dark energy in the universe
 - > 3D map of the geometry of the dark universe
- Science done with 2 instruments:
 - The VIS imager: visible instrument for photometry of the galaxies in the Visible
 - > The NISP: Near Infrared Spectro-Photometer: NIR instrument for
 - ✓ Photometry of the galaxies: position in 2D
 - ✓ Spectroscopy to know precisely the redshift of the galaxies: position in time

Consortium

- NISP instrument is made by a consortium of more than 6 countries
 - Project manager of the project is from CNES
 - LAM is responsible of the development, assembly and test of the instrument
 - LAM is providing several sub-systems of the instrument: NI-SA, NI-GR, NI-TC
- Instrument will be delivered to ESA in June 2019 (date to be confirmed)

NISP performance test campaign

- NISP instrument will be fully tested at LAM ullet
 - > Functional tests:
 - ✓ Motors movement at cold (filter and grism wheel)
 - ✓ Detector acquisition at cold
 - ✓ NISP thermal behavior at cold

✓ Detector characterisation at <u>cold</u> with warm electronics

needed

- Dark, noise, intra-pixel response, linearity, latency, pixel non homogeneity
- ✓ Optical characterisation at cold
 - FoV verification, plate scale, optical quality (encercled energy)
 - Rough measurement: througput, stray light (verification no big problem)
 - Spectral dispersion full characterisation

Optical interfaces with PLM verification at cold

- ✓ Object plane measurement
- ✓ Optical axis measurement

Validation of the calibration strategy at cold

Euclid Consortium

- A global mean called the Verification Ground Support (VGS) has been developed for NISP test
- It contains:
 - Optical means (OGSE) with a telescope simulator
 - Thermal and Mechanical means (MGSE & TGSE) to put and maintain the instrument at operational temperature
 - ✓ 130K for the structure, 90K for the detector with a stability lower than 4mK on detectors
 - Metrology mean to measure the positions of the items in real time at cold and vacuum

Inside ERIOS vacuum chamber

NISP PFM test configuration

Thermal GSE

- Design and development of the different GSE is on going:
 - > Validation of the metrology in vacuum: done in September 2017
 - ✓ Will be presented in next slides
 - > Validation of the thermal and mechanical interfaces: done in December 2017
 - > Test and assembly of the OGSE: on going work done by a Danish team
 - ✓ Delivery at LAM in March 2018
 - ✓ Complete test in ERIOS at cold: April 2018
- Today planning for NISP TB/TV test :
 - Engineering model Test : only mechanics, electronics and software. No optics: July 2018
 - NISP first TB/TV : NISP instrument with non Flight model detector electronics: October 2018
 - ✓ Fist optical validation, partial characterisation
 - NISP second TB/ TV: characterisation of the NISP detector with Flight Model detector electronics : January 2018 (TBC)
 - > NISP vibration test: March 2018 (TBC)
 - NISP final TB/TV : full performance and functional characterisation of NISP instrument before delivery to the payload: May 2018 (TBC)

Author: A. Costille

GRD seminar – 08/02/2018

OGSE hardware

Telescope simulator : off axis parabola of 160mm diameter On back-side : small mirrors for theodolite measurement

Light source module (outside erios)

Translation stages under the telescope simulator

- Goal of the metrology for NISP TB/TV:
 - To measure the best focus plane of NISP instrument with respect to NISP reference frame
 - NISP reference frame = attached to object plane of EUCLID telescope
 = optical interface between NISP and EUCLID telescope
 - ✓ Need to be simulated during the TB/TV test

The telescope simulator (OGSE) will simulate the focus object of Rnisp $F_{TS}(X,Y,Z)$ during the test for one point of the field

Author: A. Costille

GRD seminar - 08/02/2018

- How do we do ? We measure the relative position of reference frames:
 - ➢ R_{TS}: reference frame on the telescope simulator
 - > Knowledge of R_{TS} provides the knowledge of the object focal point of EUCLID

 $R_{TS} = M_{TS} \, x F_{TS}$

- R_{P1}: NISP reference frame that is linked to NISP detector plane through metrology done at NISP instrument level
- The telescond cimulator is focused on 1 point of the NICD EaV
 - > We mea We need to measure the position of
- We repeat t

reflectors at cold

We calculate the best focus plane

- A laser tracker:
 - Portable coordinates measuring machine provided by LEICA
 - > Allow extreme accuracy over large distances
 - \succ It is an accurate theodolite combined with an accur measuring equipement

Euclid

Consortium

Metrology means for NISP TB/TV

Euclid Consortium

- For NISP need:
 - The laser tracker is installed outside ERIOS in front of a window of 180mm clear aperture (35mm thick)
- For the measurement, the laser tracker measures:
 - The return signal from the reflectors (polarimetric signal)
 - Temperature, Pressure, Humidity of the environment to calculate the air index
 - The reflectors will be installed on NISP and TS inside ERIOS (Pvacuum, cold temperature)

- BUT :
 - The laser tracker « does not know » that there is between the reflector and the measurement sets:
 - \checkmark A window with index nv
 - ✓ A « vacuum » and cold environment

GRD seminar - 08/02/2018

- To validate the use of the laser tracker, we have to answer several questions:
 - > Is a measurement possible through a window ? Yes (test done in early 2016)
 - What type of window should be used ? Plane or curved window ?
 - ✓ How the measurement is disturbed by the window ?
 - ✓ What is the impact of the position between the laser tracker and the window ?
 - \checkmark What is the error added by the window ?
 - \checkmark How do we correct the measurement done ?
 - Is a measurement possible if the laser tracker is installed directly on ERIOS chamber door ? Study during NISP metrology system test campaign
 - ✓ If yes, what is the impact of the vibrations from ERIOS ?
 - How the position between the window and the laser tracker is disturbed by ERIOS environment
 - ✓ What is the impact on the window of ERIOS environment (vacuum, cold) ?
 - How the reflectors behave at cold ? They survive (test done in early 2016)
 - \checkmark If yes, what is the impact on the measurement error ?
 - What is the measurement error ?

- 2 solutions are possible:
 - > Use a classic parallel plate as a window
 - \checkmark The window will move the object position from the laser tracker
 - ✓ 3D equations of the light propagation should be written to correct the measurement done by the laser tracker

- 2 solutions are possible:
 - > Use a classic parallel plate as a window
 - \checkmark The window will move the object position from the laser tracker
 - ✓ 3D equations of the light propagation should be written to correct the measurement done by the laser tracker
 - Use a « curved » window = concentric concave surfaces
 - ✓ If the laser tracker is placed at the center of curvature of both faces, the beam is not deviated by the window
 - The error on the measurement will only be on the distance measurement, not on the angular position
 - ✓ Using light propagation time, we calculate the following correction law:

$$L = Rc + e + L_2 = \frac{n_a}{n_2}L_m + Rc(1 - \frac{n_a}{n_2}) + e(1 - \frac{n_v}{n_2})$$

- Goal of the verification plan is to demonstrate the feasability and the performance of the metrology for NISP test
 - What accuracy can be reached for measurement at cold and vacuum with a laser tracker ?
- Preliminary tests have shown that the main impact of the laser tracker errors was:
 - The window
 - The vacuum
 - Impact of cold temperature was negligible
- It has been decided to focus the verification strategy on effect of vacuum
 - > Adding test at cold was too restrictive

- Verification plan strategy
 - To have a standard mechanical part representative of the NISP TB/TV test configuration to know what we are measuring
 - > To perform a sequential analysis
 - ✓ Knowledge of the frame
 - ✓ Measurement of the frame with a laser tracker no window
 - Estimation of the laser tracker uncertainties
 - ✓ Measurement of the frame with a laser tracker through the curved window
 - Estimation of the error introduced by the window
 - Measurement of the frame with a laser tracker through the curved window in vacuum in ERIOS
 - Estimation of the error introduced by the vacuum and ERIOS conditions
 - ✓ Measurement during VGS blank test at cold
 - Validation that the cold is not added errors on the measurement
- Work has been done in collaboration with Symetrie company

- Symetrie company was in charge of:
 - The design of the mechanical standard
 - > The measurement and analysis of the mechanical standard with:
 - ✓ The CMM
 - ✓ The laser tracker
 - The curved window: work done in colloboration with LAM for alignment and measurement with the window
- The mechanical standard reproduces:
 - TS reflectors positions
 - P1 and P3 reflectors positions
 - other planes has been added for analysis
- Design of the mechanical standard ensures its stability with temperature and time

Consortium

- Measurement of the mechanical standard with a CMM
 - Definition of a reference system on the mechanical standard Ret to locate precisely position of each reflector on the frame: (X0, Y0, Z0)
 - ➢ Measurement uncertainties: 13,2µm +1,8^e-6L
- Measurement with the laser tracker without a window
 - > To estimate error budget from the laser tracker alone
 - Uncertainties of the reflectors positions is different from the axis measured
 - ✓ Better uncertainty reached for measurement in X direction (optical axis): better than 10µm
 - $\checkmark~$ Lower uncertainty reached for measurement in Y and Z direction: around 20 μm
 - ➢ Measurement uncertainties: 62µm + 2,7^e6L

GRD seminar - 08/02/2018

- Alignment between the laser tracker and the curved window on the window curvature center
 - Metrology of the window is done
 - $\checkmark~$ A cartesian coordinate system is defined to locate the center of curvature Rw
 - > The LT locates Rw in a room reference system
 - Laser tracker is installed on its interface and move to align the laser tracker center on Rw in the room reference system
 - > Alignment better than 300µm is reached

Metrology validation campaign

Measurement of the mechanical standard with the laser tracker through the window

- > Coordinates (X2, Y2, Z2) for each reflectors in Ret
- In spherical coordinates, a constant error in distance is measured: 13,93mm
 - Consistent with the impact of the glass: d = e(nv-na)
- Coordinates (X3, Y3, Z3) are calculated with constant error correction
- > Difference between (X3, Y3, Z3) and (X0, Y0, Z0) is calculated
- Difference better than 30µm (mean values on each reflectors coordinates)

(ρ2,θ2,φ2) - (ρ0,θ0,φ0)

	Bille #	Δρ (mm)	Δθ (°)	Δφ (°)
	BILLE_1	13,929	-0,005	-0,009
	BILLE_2	13,925	-0,005	-0,010
	BILLE_3	13,924	-0,005	-0,009
	BILLE_4	13,927	-0,005	-0,009
	BILLE_5	13,926	-0,005	-0,009
	BILLE_6	13,925	-0,005	-0,009
	BILLE_7	13,930	-0,005	-0,009
	BILLE_8	13,930	-0,005	-0,009
	BILLE_9	13,928	-0,005	-0,009
	BILLE_10	13,928	-0,005	-0,009
	BILLE_11	13,927	-0,005	-0,009
	BILLE_12	13,930	-0,005	-0,009
	BILLE_13	13,929	-0,005	-0,009
	BILLE_14	13,931	-0,005	-0,009
	BILLE_15	13,934	-0,005	-0,009
	BILLE_16	13,940	-0,005	-0,009
	BILLE_17	13,940	-0,004	-0,009
	BILLE_18	13,933	-0,005	-0,009
	BILLE_19	13,931	-0,004	-0,009
_	BILLE_20	13,936	-0,004	-0,009
1	Min	13,924	-0,005	-0,010
	Max	13,940	-0,004	-0,009
	Moy	13,930	-0,005	-0,009
Author: A	Ecart Type	0,005	0,000	0,000

(ρ3,θ3,φ3) - (ρ0,θ0,φ0)

	Correction p		Correction ρ θ φ			
Bille #	ΔX (mm)	ΔY (mm)	ΔZ (mm)	ΔX (mm)	ΔY (mm)	ΔZ (mm)
BILLE_1	0,015	0,034	-0,005	0,015	0,029	-0,005
BILLE_2	0,016	-0,003	0,031	0,016	-0,007	0,030
BILLE_3	0,011	0,023	0,015	0,011	0,021	0,016
BILLE_4	0,012	0,014	0,017	0,012	0,013	0,017
BILLE_5	0,010	0,025	-0,006	0,010	0,025	-0,005
BILLE_6	0,005	0,013	-0,012	0,005	0,013	-0,012
BILLE_7	0,004	0,019	-0,013	0,004	0,019	-0,014
BILLE_8	0,000	0,000	0,000	0,000	0,000	0,000
BILLE_9	0,004	-0,005	0,000	0,004	-0,005	0,001
BILLE_10	0,000	-0,011	0,000	0,000	-0,011	0,000
BILLE_11	0,003	-0,021	0,023	0,003	-0,023	0,022
BILLE_12	0,001	0,000	0,014	0,001	-0,001	0,014
BILLE_13	-0,004	-0,008	0,006	-0,004	-0,008	0,006
BILLE_14	-0,003	-0,008	-0,013	-0,003	-0,008	-0,013
BILLE_15	0,000	-0,005	-0,007	0,000	-0,004	-0,008
BILLE_16	0,000	0,000	0,000	0,000	0,000	0,000
BILLE_17	-0,001	0,035	0,013	-0,001	0,034	0,014
BILLE_18	-0,002	0,028	0,023	-0,002	0,026	0,023
BILLE_19	-0,008	-0,011	0,040	-0,008	-0,013	0,040
BILLE_20	0,003	0,023	0,025	0,003	0,021	0,025
Min	-0,008	-0,021	-0,013	-0,008	-0,023	-0,014
Max	0,016	0,035	0,040	0,016	0,034	0,040
Moy	0,003	0,007	0,008	0,003	0,006	0,008
Ecart Type	0,006	0,017	0,016	0,006	0,017	0,016

- Sensibility analysis done between the position of the window and the laser tracker
 - Window is moved in each direction of +/-3mm
 - > Impact of the difference is calculated
 - Error added by the window is lower than 30µm when the laser tracker is aligned around +/-1mm from the curvature center
 - More impact if we move along the optical axis of the window

- Test of the MVS at Pvacuum and Tambient is Erios has been done in September 2017:
 - > The mechanical standard has been installed inside ERIOS
 - Reflectors coordinates are compared to the value of the measurement standard coordinates on the CMM
- This test has allowed:
 - Validating the alignment procedure of the laser tracker with the curved window
 - Validating of the correction factor to be applied to the data at Pambient and Pvacuum
 - Estimating the measurement uncertainties at Pvacuum

Consor

- With the window alone, impact on the laser tracker measurement
 - > Error of 13,93mm in the distance measurement (in spherical coordinates)
 - > Impact on angle measurement values negligible (θ, ϕ)
- Hypothesis taken for the impact of the vacuum on the laser tracker measurement
 - > Error on the distance measurement linked to:
 - ✓ The window
 - ✓ The vacuum index (=1)
 - > Impact on angle measurement values negligible(θ, ϕ)
 - > The laser tracker is aligned on the window curvature center better than +/-1mm
- We propose to apply the correction factor:

 $\rho_{corr} = \rho_{mes} - 13.93 \text{mm} + (n_a - 1)^* (\rho_{mes} - 13.93 - 300)$

- Analysis done with the comparison of the reflectors coordinates measured with the laser tracker and a CMM
 - Coordinates difference in (X,Y,Z)

$$diff = \sqrt{(x_{lt} - x_{CMM})^2 + (y_{lt} - y_{CMM})^2 + (z_{lt} - z_{CMM})^2}$$

Residual Error on the coordinates lower than 60µm ie lower than measurement uncertainties

data

Correction of the data at Pambient

Correction of the data at Pvacuum

- Measurement repeatability similar at Pambient and Pvacuum
 - ➤ Uncertainties on X axis: < +/-15µm</p>
 - ✓ Same values as measurement with a laser tracker without a window
 - \succ Uncertainties on Y and Z axis : < +/-60 μ m
 - ✓ Same values as measurement with a laser tracker without a window
 - Small increase of the uncertainties at Pvacuum due to the environment: not critical
- For measurement in Erios, an average of 5 measurements will be considered

- Additional test has been performed at cold in December 2018 ۲
- During the blank test of the thermal and mechanical GSE of NISP, we have put:
 - > 3 reflectors on an aluminium plate
 - 4 reflectors on an invar plate (NISP feet interface)
- Goal of the test was:
 - To validate the measurement of reflectors at cold
 - \checkmark No deteriotation of the reflector due to cold
 - ✓ No measurement issue
 - ✓ No impact of the cryopump on laser tracker measurement
 - > To estimate if an additional correction factor is needed at cold

Author: A. Costille

Page : 29

- Test was considered as successful as:
 - All reflectors are still « intact » after cold temperature and keep their measurement accuracy
 - Measurement repeatability at cold was similar to the one measured at Pvacuum and Tambient:
 - ✓ Increase of the measurement repeatability with this configuration as the interfaces are less stable mechanicaly
 - > No additional « cold » correction has been identified
 - ✓ Inter-reflector target distance has been measured and compared to estimated cold distance with CTE knowledge

Author: A. Costille

CONCLUSION

- Test campaign done at LAM has demonstrated the feasility of the laser tracker measurement for NISP TB/TV
 - > Is a measurement possible through a window ? Yes
 - > What type of window should be used ? Curved window
 - How the measurement is disturbed by the window ? Distance to be corrected by a constant value from the window + variable due to index variation
 - ✓ What is the impact of the position between the laser tracker and the window ? Robustness of the aligment has been observed
 - ✓ What is the error added by the window ? « nothing » after correction law application
 - ✓ How do we correct the measurement done ? Correction law identified
 - Is a measurement possible if the laser tracker is installed directly on ERIOS chamber door ? YES
 - ✓ If yes, what is the impact of the vibrations from ERIOS ? Increase of measurement repetability => on X axis < 20µm; on Y and Z axis < 60µm
 - ✓ How the position between the window and the laser tracker is disturbed by ERIOS environment : no major impact observed
 - ✓ What is the impact on the window of ERIOS environment (vacuum, cold) ? No impact
 - > How the reflectors behave at cold ? They survive (test done in early 2016)
 - ✓ If yes, what is the impact on the measurement error ? Impact lower than the other error term
 - What is the measurement error ? Measurement error from the laser tracker at cold and vacuum : +/-80µm (tbc)

- We have a metrology mean for the NISP TB/TV test campaign
- We have understood the measurement from the laser tracker through a window
- We have developed a method to correct the measurement
- Uncertainties budget still need to be consolidated
 Will be done thanks to next test campaign
- At the end of NISP test campaign, we will be able to offer this metrology mean for all test campaign done in ERIOS