

FINE COPHASING OF SEGMENTED APERTURE TELESCOPES - THE STORY OF A PHD QUEST

by P. Janin-Potiron

GRD seminar - 22nd of March 2018

Scientific & Instrumental context

INSTRUMENTAL SCIENTIFIC & CONTEXT

SEGMENTED TELESCOPES THE ERA

THE COPHASING NEEDS

- PHASING SENSOR

- PHASING SENSOR

SCC-PS AND RFT₩ THE ZELDA-PS

PROPERTIES NTS OF THE COPHASING SYSTEMS

LIFE IMPLEMENTATION REAL

PERSPECTIVES

Scientific & Instrumental context - which objectives ?

- -In 1995, the discovery of a planet around 51 Pegasi opens a new era for astronomy
- There are different ways of detecting exoplanets like transit or radial velocity methods
- Direct imaging allows to characterize the spectrum of the planet, i.e. to look for signs of life

« There is an infinite number of worlds like ours and an infinite number of different that are different. »

Scientific & Instrumental context - which means ?

Two major axis to develop to increase the performances

ANGULAR the Increase **RESOLUTION** of these telescopes

Increase the HIGH CONTRAST **IMAGING** capabilities

The segmented telescope era

SCIENTIFIC & INSTRUM Context

THE SEGMENTED TELESCOPES ERA

THE COPHASING NEEDS

THE SELF-COHERENT C - PHASING SENSOR

THE ZELDA - PHASING Sensor

COMPARISON SUMM Between the SCC-PS Zelda-PS

PROPERTIES Improvements of Cophasing Systems

REAL LIFE IMPLEMENTATION

PERSPECTIVES

WHAT DO WE WANT ?!

(The greedy astrophysicist - 101) More photons and greater spatial resolution !!!

The greedy astrophysicist - 101

AND HOW DO WE GET THIS ? TELESCOPES !

WITH BIGGER

« An obvious solution to these and other problems is to compose the primary mirror from smaller segments, rather than a single large mirror. »

J. Nelson, Segmented Mirror Telescopes

LETS TRY TO DO IT FOR LARGE DIAMETER **BIGGER MIRRORS**

LEGO STYLE IS GOOD BUT IF NOT PHASED ... BAD THINGS HAPPEN !

MONOLITHIC SOLUTION

BIGGER TELESCOPES

« Although, there are a number of unique issues, concerns, and problems that arise with segments, and must be understood and dealt with [...] »

LEGO STYLE IS GOOD BUT IF NOT PHASED ... BAD THINGS HAPPEN !

MONOLITHIC SOLUTION

BIGGER TELESCOPES

SEGMENT

Elementary component of the segmented pupil

SEGMENT

With HEXAGONAL shape

SEGMENT

Only defined by its radius r

Grid with hexagonal lattices

One segment at each node of the hexagonal grid

Variable GAP size between each segment

Variable GAP size between each segment

Each segment is actionable in PISTON

Each segment is actionable in PISTON

Each segment is actionable in TIP-TILT

Each segment is actionable in TIP-TILT

O P T I C A L Propagation

Position errors of piston, tip and tilt translated to phase errors ($\phi=2\pi\Delta {\rm p}/\lambda$)

O P T I C A L Propagation

Optical propagation from PUPIL PLANE to FOCAL PLANE by Fast Fourier Transform

The cophasing needs

SCIENTIFIC & INSTRUM Context

THE SEGMENTED TELES ERA

THE COPHASING NEEDS

THE SELF-COHERENT C - Phasing Sensor

THE ZELDA - PHASING Sensor

COMPARISON SUMM Between the SCC-PS Zelda-PS

PROPERTIES Improvements of Cophasing systems

REAL LIFE IMPLEMENTATION

PERSPECTIVES

The cophasing needs - Piston errors

Perfectly cophased

Fourier transform of the grid function

Random piston error

Chanan & Troy (1999) / Yaitskova & Dohlen (2002) / Yaitskova et al. (2003)

PSF o f Н single segment

12

Х

The cophasing needs - Tip and tilt errors

Perfectly cophased

Fourier transform of the grid function

Random tip-tilt error

Chanan & Troy (1999) / Yaitskova & Dohlen (2002) / Yaitskova et al. (2003)

Х

PSF o f single segment

Resultant PSF

13

The Self-Coherent Camera - Phasing Sensor

SCIENTIFIC & INSTRUM Context

THE SEGMENTED TELES ERA

THE COPHASING NEEDS

THE SELF-COHERENT C - Phasing Sensor

THE ZELDA - PHA Sensor

COMPARISON SUMM Between the SCC-PS Zelda-PS

PROPERTIES Improvements of Cophasing systems

REAL LIFE IMPLEMENTA

PERSPECTIVES

S	0 M	E	R	S G
			H	J
2			N	Ե
	A	A	R	Y D
1	A A T		R N H	Y D D E

The SCC-PS - How does it work ?

SCC-PS: Janin-Potiron et al. (2016)

entrance phase)

15

SCC: Baudoz et al. (2006); Galicher et al. (2008)

