

HighRes: High-resolution deployable CubeSat for Earth observation

N. Schwartz, S.Todd, D. Pearson, D. Lunney, D. McLeod, A. Vick, J.-F. Sauvage

What is a CubeSat?

- A CubeSat is a standardised miniaturised satellite
- Made of multiple cubic units "U"
 ➤ 1U = 10x10x10 cm³ & 1U < 1.33 kg
- Specifications developed in 1999 for students
 - Launched from the ISS or as secondary payload (P-POD)
 - Used for experiment, technology demonstrators, risky missions...
 - Cheap & short development cycle

Category	Mass (kg)
Large Sat.	> 1000
Medium Sat.	500 to 1000
Mini Sat.	100 to 500
Micro Sat.	10 to 100
Nano Sat.	1 to 10
Pico Sat.	0.1 to 1
Femto Sat.	< 0.1

3U Cube Sat

ISS Launch

CubeSats in number #1

Science & Technology Facilities Council UK Astronomy Technology Centre

CubeSats by Form factor

CubeSats in numbers #2

CubeSats by type of organisation

Plots from the CubeSat database from the Saint Louis University:					
https://sites.google.com/a/slu.edu					
<u>/swartwout/home/cubesat-</u>					
<u>database</u>					

Science & Technology Facilities Council UK Astronomy Technology Centre

CubeSats by altitude

Drivers for higher resolution

- Tactical/Military objectives
 - Our source of funding!
 - Req.: Interpretability of images
- Disaster monitoring

Astronomy Technology Centre

- Approx. 1m Ground Sampling Distance (GSD)
- Use of a constellation to provide time resolution and global coverage

	Emergency	Phase	GSD	Time
Gupta 1995	Floods	Monitoring Management	30-100 m 10-100 m	12h 3-12h
	Landslides	Monitoring Management	30-250 m 10-100 m	1d 3-12h
	Earthquakes	Management	1-100 m	3-12h
	Volcanoes	Monitoring Management	30 m 10-30 m	1d 6h-1d
	Fires	Monitoring Management	100 m 30 m	1–3h 0.25h
	Sea Pollution	Monitoring Management	1 km 100 m	1d 6-12h
	Border	Monitoring	1-10 m	3h
	Humanitarian	Management	1-10 m	1-3h

The need for deployable optics

- High-level specifications for HighRes
 - > Approx. 1m ground sampling distance at 400 km altitude
 - > 2U optical payload (to fit into 3U satellite)
 - Panchromatic imaging system: approx. 450-800 nm
 - > Diffraction limited imaging with D \approx 300 mm

2.1 m resolution

30 cm aperture at 350 km

0.7 m resolution

• 3U CubeSat

nce & Technology Facilities Council Astronomy Technology Centre

- Limited to 9-10 cm apertures
- $\succ \rightarrow$ Deploy optics to increase resolution
- Need proof of concept study!

Optical design

- Cassegrain telescope
 - Segmented parabolic primary of 300 mm
 - M1-M2 separation of 200 mm
 - Requires a fast primary mirror
- Lens corrector system
 - Uniform undistorted FoV
 - Set output focal ratio (match pixel size)

Segment co-phasing

- 4 mirror segment geometry
 > Create a 4-lobed PSF
- Diffraction limited telescope
 - Segments must act as part of a single optical surface
 - > Requires an RMS wavefront error <40nm (λ /14)
- Control of segments

JK Astronomy Technology Centre

Slide 8

Active optics system

- Sensing & control M1 segments
 - On point-source and extended objects
 - ➤ Large measurement/control range: ~10 µm
 - High measurement/control resolution: ~10-20 nm
 - Temporal bandwidth: < a few Hz</p>
- Constrains
 - Very limited real estate
 - Limited electric & computing power

Example of PSF after deployment

Science & Technology Facilities Council UK Astronomy Technology Centre

Slide 9

Active optics – Possible options

- Direct wavefront sensing (e.g. SH)
 - Requires additional hardware
- Displacement sensors
 - Typically not compatible with CubeSat constrains (TBC)
 - Measures the back surface or outside of M1
- Focal plane sensing
 - Phase diversity

Astronomy Technology Centre

- Focal plane sharpening
 - Direct use of image
 - Iterative process

Scope of the work

- Correct static alignment errors due to deployment in accuracies
 - No dynamic aberrations using static ground scene
 - Preliminary investigation of implication of moving ground scene
- High-resolution EO scenes taken from a plane
 - Mostly farmland and urban areas
 - Various levels of cloud coverage, contrast & brightness
- Development of an end-to-end model (OOMAO)
 - Validation of correction principle
 - Understand limitations
- Implication of design and focal plane sharpening
 - Image interpretability
 - On-board computing

Focal plane sharpening

- Quick overview of algorithm
 - Receive the detector image as input 1.
 - Measure a quality criteria based on the image 2.
 - Ensquared energy, Spatial frequencies
 - Standard deviation, Haar wavelet...
 - Change the segments' tip, tilt & piston 3.
 - Optimise using the Nelder-Mead downhill-simplex method 4.
- Image metrics

JK Astronomy Technology Centre

- Virtually impossible to find a object-insensitive metric
- Ensquared energy & spatial frequency
 - Robust metrics
 - Simple to compute
 - Trade-off necessary to optimise for capture range or noise

Filter high f<u>requencies</u> Filter low frequencies

Overview of main results

- Final correction quality
 - Reach diffraction limit both on point-source & extended objects
 - Image contrast C is a very good indicator of final correction quality (approx. 75% correlation between C and SR_{Final})
 - > Sampling has little impact (i.e. 1 or 2 pixels per λ/D)
- Noise
 - Limited impact of noise under realistic observation conditions
 - Little impact of scattered light from the atmosphere (source of noise)
- On-board computing possible with current technology

How to maintain alignment during operations?

- Methodology
 - Mode by mode optimisation
 - Function fit on N points

Metric Values

Quadratic Fit

50

100

150

0

PV Piston [nm]

- Still on-going investigation
 - No show stoppers

UK Astronomy Technology Centre

- Fairly good overall performance
- But limited capture range
- Requires further investigation

1.6605

-150

-100

-50

Image interpretability

Image 'Waffle' due to 4-lobed PSF HighRes

Circular aperture

Promising initial results using deconvolution

Science & Technology Facilities Council UK Astronomy Technology Centre

Slide 15

Mechanism design

1. Single-use deployment

IK Astronomy Technology Centre

- Deploy the 4 mirror segments
- 2. Move segments in tip, tilt, piston
 - Actuators with large travel & high resolution
 - 3 motors on each mirror to provide tip/tilt/piston

Piezo Motors & Capacitive sensors

- Newfocus Piezo motors
 - 30 nm resolution
 - 12.7 mm of travel
- Issue with repeatability of actuators
 - Large hysteresis and backlash
 - Inadequate for co-phasing
- Incorporate capacitive sensors
 Absolute positioning capability

Actuators exhibit large hysteresis

MicroEpsilon CSE05

Modular build

- Easy alignment of sensors, hardware and optics
- One mirror can be adjusted or modified without affecting others
- Replacement of faulty hardware
- Disassembly and modifications during MAIT

Mirror assembly (x4)

Demonstrator

- Commercial Newtonian telescope used to provide 300 mm collimated illumination.
- Light input:

icience & Technology Facilities Council JK Astronomy Technology Centre

- FLCoS micro-display to project extended objects
- Single mode fibre for diffraction limited source
- Vertical setup ensures all petals see identical gravitational forces.

Camera

Camera

Bench schematic overview

Deployment mechanism

- Single-use deployment capability
 - Use of Shape-Memory Alloy (SMA) to deploy
 - Ohmic heating of SMA in close loop

Repeatability

Science & Technology Facilities Council UK Astronomy Technology Centre

- Mirror repositioned within 1.3 microns on all three sensors
- More tests required to obtain statistics

Robustness test

Segment adjustments

 Sensor / actuator / flexure combination provides adjustment resolution in excess of that required to align mirrors for diffraction limited system

UK Astronomy Technology Centre

Second segment being aligned

72

Mirrors & optical quality

Astronomy Technology Centre

- All 4 mirrors were diamond machined
- Difficulties in achieving the surface error specifications
 - Residual wavefront error approx. 70-100 nm RMS
 - Best possible Strehl Ratio < 20-40%</p>

• Alignment of mirror segments quite tricky

Implications

Astronomy Technology Centre

- High spatial frequency errors
 - Central sport surrounded by a halo of speckles
 - Implication on extended scenes to be quantified
 - Will produce a substantial loss of contrast
- Careful alignment can achieve a spot with compact central core
 - > Alignment is challenging due to the tight tolerances (i.e. fast mirror)
 - In hindsight, alignment procedure could be improved (absolute ref. points, central fixed mirror...)
- Delays in implementation of the focal plane sharpening

Next steps

• Imminent (i.e. following weeks)

Continue experimental aspect of Focal Plane Sharpening

- Further investigation
 - Design M2 deployment mechanism
 - Reduce the need for high tolerances by design
 - e.g. increase M1-M2 distance
 - Compare focal plane sharpening to other sensing strategies
 - e.g. phase diversity
- Even further

Astronomy Technology Centre

Launch from the ISS

