MAVIS : Mcao Assisted Visible Imager and Spectrograph

a MCAO module for the VLT-AOF: Toward wide field visible observations

> Yoann Brûlé - LAM 17th May 2018 LAM R&D Seminar

Overview

- What is MAVIS ?
 - Multi-Conjugate Adaptive Optics ?
 - Why go to the visible ?
 - Is visible/MCAO do-able ?
- MCAO simulations @ LAM
 - Fourier / E2E
 - E2E MCAO code (OOMAO)
 - Principle
 - Validation
 - MAVIS dimensioning
- Prospects

Deeper than HST, Sharper than JWST

What is MAVIS?

MAVIS (MCAO-Assisted Visible Imager & Spectrograph) is a proposed instrument for ESO's VLT Adaptive Optics Facility that will provide near-diffraction limited image quality over a large field of view using Multi-Conjugate Adaptive Optics. MAVIS is an Australian-European project.

More information at http://mavis-ao.org/mavis.

Science with MAVIS

- > Star formation histories of the local volume through resolved stellar populations
- » Local group internal dynamics via proper motions and crowded field spectroscopy
- Resolving star formation clumps to high redshift
- Dark matter substructure via lensing
- Monitoring solar system bodies

Strawman MAVIS Requirements

Field of view	30"x30"	
Angular resolution	FWHM ~ 20mas at V band	
Wavelength coverage	VRI, extended to UBz	
Strehl ratio	15% at V under median seeing conditions	0.14
Sky coverage	> 50% at Galactic Poles	
lmager	~ 7mas pixel size. Broad and narrow band filters. Tuneable filters - to be explored	
Spectrograph	Fibre + Starbug concepts to be explored: Highly multiplexed point-source capabilities Multiplexed compact IFUs (0.5" FoV) and larger FoV IFUs. R=5,000-10,000. Alternatively, 3"x3" image slicer IFU with 25mas spaxels.	

28751

44365 0.18

V4.0 2018/4/6

B. Neichel C. Correia

http://mavis-ao.org/mavis

Multi-Conjugate Adaptive Optics (MCAO)

- Several DMs conjugated at different altitudes
- Increased the corrected field of view beyond limitations of natural angular anisoplanatism

Why go to the visible ?

- Science and physical arguments compared to NIR
 - Sky background is much smaller (1000 to 10000 darker than K)
 - Most of the action is in the visible (atomic lines) !
 - 500 nm on an 8-m VLT \rightarrow same angular resolution as 2 μ m on an 39-m ELT
 - A lot more ...
- Technological arguments compared to NIR
 - Large visible detectors are cheap and detector quality is much better
 - Low noise (<1e- RON), large (4kx4k) and fast (10 frames/s) detectors exist

Is VISIBLE do-able ?

- SCAO correction in the visible exists
 - 650 nm images from Forerunner @ LBT
 - 0.8" seeing
 - 50% Strehl ratio !
 - 18 milliarcsec FWHM

 There are similar images from SPHERE @ VLT (95% Strehl @ K-band → 37% @ V band)

VISIBLE + MCAO ≈

DO-ABLE

Filling a resolution gap of current VLT/I instrumentation

The AOF (VLT-UT4)

- The existing facilites :
 - A Deformable Secondary Mirror (DSM) with 1170 actuators conjugated to the ground (≈20 cm actuator pitch projected on M1)
 - Four 20W Laser Guide Stars associated to 4 SH WFS 40x40 for GLAO

- Appropriate to push correction to the visible wavelength
- What would be missing for MAVIS ?
 - 2/3 post focal DMs
 - 3 NGS SH WFSs with low RON infrared detectors for Tip/Tilt Anisoplanatism
 - 1/2 LGS + 1/2 SH WFS 40x40 with low RON detector ?

MCAO simulations

- Fourier simulations (T. Fusco)
 - Independant realisation of phase screens in the Fourier space
 → white noise colored by the spectrum of the turbulence
 - Each operator (propagation/measure/tomography/correction) acts as linear spatial filter
 - Difficulties to deal with edge effects (infinite pupil)
 - No conical propagation (no LGS)
 - Fast computation (≈1s)
- E2E simulation with OOMAO

MCAO E2E simulations in a nutshell

- Tomographic reconstruction of the turbulent volume
 - LGS wavefront sensing (does not apply to Tip/Tilt)
 - \rightarrow Reconstruction of the HO zernike modes (>3)
 - NGS wavefront sensing for Tip/Tilt Anisoplanatism (TTA)
 - → need for 3 well spread natural stars to be effective

Tomographic error (number and configuration of LGS and NGS)

MCAO E2E simulations in a nutshell

- Projection of the turbulent volume onto the DMs (fitting step) through split tomography
 - HO projections depends on :
 - the number of DMs and their conjugation altitudes
 - the « optimized » FoV/directions of the sky that as to be correct

 TTA modeled through a 5 quadratic « null modes » space projected on the first two DMs

> Generalized fitting errors (number of DMs, pitch, conjugation altitudes)

Validation : Fourier versus E2E simulations

- Fourier simulations by T. Fusco
 - Atmosphere:
 - Seeing (at Zenith) 0.8"
 - Zenith angle 30°
 - L₀ 25m
 - Cn² profile on 10 layers
 - Mean wind speed $\approx 10 \text{ m.s}^{-1}$
 - 4 (Baseline) or 5 LGS (Goal)
 - On the edges of the FoV
 - One at the center
 - 2 (Baseline) or 3 (Goal) DMs:
 - 0km, 25 cm pitch / 8km, 40 cm pitch
 - 0km, 25 cm pitch / 1.3km, 40cm pitch / 8.5km, 40 cm pitch
- E2E simulations
 - 1 kHz pseudo open-loop simulation of 2s
 - Full tomography on LGS (no TTA)
 - Point spot @ 90 km, conical propagation
 - 32x32 SH WFS with 10x10 pixels/s.a. with no noise detector
- Output :
 - Strehl map on the FoV in H band

Baseline configuration 2 DMs / 4 LGS / FoV 30"

Baseline configuration 2 DMs / 4 LGS / FoV 60"

Baseline configuration 2 DMs / 4 LGS / FoV 120"

Goal configuration 3 DMs / 5 LGS / FoV 30"

Goal configuration 3 DMs / 5 LGS / FoV 60"

Goal configuration 3 DMs / 5 LGS / FoV 120"

$E2E <SR> + \sigma(SR) = 22 + /-6\%$ Strehl-ratio contour in H band

Summary : discrepancies ?

MAVIS dimensioning

- Initial configuration from Fourier simulations (T. Fusco)
 - Number and position of LGS and corresponding tomographic error
 - Number, pitch, and conjugation altitudes of DMs and corresponding fitting error
- Refinement with E2E simulations :
 - WFS noise impact (NGS and LGSF)
 - Sky coverage studies (TTA)
 - NGS positions and magnitude (H band)
 - Slow NGS wavefront sensing

Prospects

- Use of Paranal Cn² profile (J. Osborn & O. Farrel) to optimize DMs conjugation altitudes with Fourier code (tomographic error)
- MOAO with micro DMs for NGS WFS (Sky coverage improvement)
- Other concepts (Star Oriented Segmented-MCAO)

Thank you for your attention !

http://mavis-ao.org/

