

Optical interference filters technology for space applications

Thomas Begou, Cihan Koc, Fabien Lemarchand, Frédéric Lemarquis, Antonin Moreau et <u>Julien Lumeau</u> RCMO Team

Aix-Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, UMR 7249, 13013 Marseille, France julien.lumeau@fresnel.fr

LAM – 2018/11/22

Optical Thin Film Research Team

3 Ass. Prof., 1 Emeritus Pr., 1 Research Scientist, 2 Engineers

2 Ph.D. Students

<u>1 Technological platform</u>: *Espace Photonique*

Projects:

Various projects with Public and Private entities.

- 1/3 of our projects are with private companies.
- 1/3 of our projects are with CNES
- 1/3 of our projects are with academic projects

Optical interference filter

Thin-film multilayer stack for the control of the spectral properties of the light transmitted by the substrate on top of which it has been deposited.

Optical filtering functions

-5

Optical filters design and fabrication

The Espace Photonique Platform

Thin film filter design

Material optical properties

- Spectrophotometric measurements (Optical measurements) •
 - Different incidences, polarizations... ٠
 - Different substrates .
 - Multilayers
- Various dispersion models •
 - Cauchy, Sellmeier •
 - Tauc Lorentz
- Various optimization methods ٠

Precision on n and k is within 0.001 or better over a broad spectral range from 1 to several octaves.

650

750

850

Thin film filter design

Design techniques

 <u>Goal</u>: determine the sequence of alternated H and L refractive index materials having resulting R(λ) and T(λ) meeting the specifications.

Commercial software (Optilayer)

Optical monitoring : trigger point method (from the monochromatic transmission measurement of the sample during deposition, each layer is stopped at optimized transmission value

Thin film filter design

Virtual Deposition Process

• <u>Goal</u>: Determine the optimal monitoring strategy and predict the success rate of a deposition.

M. Vignaux, et al., Optics Express 25, 18040-18055 (2017).

High performances deposition machine Bühler/Leybold Optics HELIOS

High performances deposition machine

A few details

- 12 sample holders (1 dedicated to optical monitoring).
- Plate rotation at 240 rd.min-1.
- Load-lock.
- 4 process zones :
 - 1 assistance plasma source,
 - 2 MF magnetron sputtering sources (dielectric material deposition),
 - 1 DC sputtering source (metallic material deposition).
- Real time monochromatic optical monitoring of the deposition in transmission.
- Available targets : Si, Nb, Hf, Ta, Ag, Cr.
- Available Gas : Ar, O2, N2.

Multispectral filters IDEFIX R&T CNES project

Bi	$\mathrm{CWL}\;\lambda_{\mathrm{e}}(\mathrm{nm})$	FWHM Δλ (nm)	Mean T (%)	Rejection ratio (%)	Total integrated Scattering TIS (%)	Slope 10% 90% (nm)
B0	415 ± 3	$40\pm10\%$	> 80	< 0.3	< 0.3	< 5
B1	667 ± 2	$30\pm10\%$	> 80	< 0.3	< 0.3	< 5
B2	782 ± 1	$16\pm10\%$	> 80	< 0.3	< 0.3	< 5
B3	910±2	$20\pm10\%$	> 80	< 0.3	< 0.3	< 5

www.opticsbalzers.com

Bandpass filters design

- Various possible approaches for the same type of optical functions.
- All are possible but they present various advantages and drawbacks.

Filters for space applications

Objective: Error not exceeding a few percent over broad spectral range

Filtering face (93 layers, 4600 nm Nb₂O₅ and 5500 nm SiO₂)

Filters for space applications

Objective: Error not exceeding a few percent over broad spectral range

Blocking face (100 layers, 3800 nm Nb₂O₅ and 5800 nm SiO₂)

Filters for space applications

Objective: Error not exceeding a few percent over broad spectral range

Narrowband filter with broad rejection band

Filters for space applications

Objective: Error not exceeding a few percent over broad spectral range

Narrowband filter with broad rejection band

Filters for space applications

Objective: Error not exceeding a few percent over broad spectral range

Excellent agreement between theory and experiment

Complex filter Filters for space applications

Objective: Error not exceeding a few percent over broad spectral range

Uniformity better than 0.5% over 80 mm aperture

Complex filters - Other examples

Bleu and IR filters (3MI-mission)

443 NM 3MI FILTER

T. Begou, et al., CEAS Space J 9(4), 441–449 (2017)

Transmission

2132 NM 3MI FILTER

Stress in optical coatings

Fundamental studies

STONEY formula:

$$\sigma = \frac{E_s t_s^2}{6(1 - v_s)t_f R}$$

Stress compensation is obtained if:

 $(\sum t_{Nb205}\sigma_{Nb205} + \sum t_{Si02}\sigma_{Si02})_{back\ side} = (\sum t_{Nb205}\sigma_{Nb205} + \sum t_{Si02}\sigma_{Si02})_{front\ side}$

- Theoretical aspects: athermal structures
- Thorough experimental studies

Stress in optical coatings

Fundamental studies

- Linear Fit : $\sigma_i = K_i$ [5]
- Second order polynomial Fit : $\sigma_i = A_i + B_i t_i$

Matarial	Line	ar Fit	2 nd order polynomial fit		
Material	K	MF	Α	В	MF
Nb ₂ O ₅	61.4	0.051	61.0	0.0003	0.050
SiO ₂	418.5	0.061	371.2	0.0360	0.042

High performances mirrors ELI-NP project

- $R_S/R_P > 99.95\%$ @ 515nm, AOI = 25°
- Flatness λ/30 @ 515 nm
- Ultra precise characterization of stress in coatings
- Stress compensation using bi-facets deposition

High performances mirrors ELI-NP project

- July-September 2016: delivery of 80 mirrors to ALSYOM.
- October-December 2016: delivery of 42 mirrors to LAL.

- 60 mirrors Φ30 mm and 42 miroirs Φ50/75 mm with perfectly compensated flatness
- 20 mirrors Φ30 mm with an addition +2 nm PtV curvature on the front face.

	Flatness in $\lambda/30$	Rs, %	Rp, %
Average	0.858	99.9648	99.9590
STDEV	0.173	0.0082	0.0107

High performances mirrors ELI-NP project

Mono-chip color camera

Bayer-type filter

Color Filter Array Sensor

Fabrication technology

Lift-off using 2 photoresists

(b) Deposition

(c) Photoresist removal

Lift-off technique using 2 photoresists

- · Use of small caps to prevent walls formation.
- Precise positioning of the masks.
- Low temperature deposition of the multilayer layer (80-100°C).
- Removal of the photoresists.

Bühler SYRUSpro 710

Deposition of structured filters

Geometrical characterization

Zygo NewView 7300 - 1 pixel

X10 objective - Zoom x1

X100 objective - Zoom x0,5

Geometrical characterization

Zygo NewView 7300 - 4 pixels

X10 objective – Zoom x1

X100 objective - Zoom x0,5

Spectral characterizations

Resolution: spatial 2 mm, spectral 0.5 nm

New developments

RIE on multilayer structures

> DRIE of multilayer structures

Deposition and liftoff

Linearly variable filters The approach

Modification of the shutter in order to insert non uniformity mask that will be closer to the substrate (few mm)

Shutter closed

Shutter opened

Linearly variable filters Illustration

- > Dimensions of the non uniformity mask
- Linear thickness gradient on a 10 mm zone
- Thickness ratio of 3 between the extreme part of the mask

Optical monitoring performed for **thinner** part of the component

Linearly variable filters

x (mm)

Double cavity bandpass filter

- Dynamic evolution of the transmission as a function of the *x* position
- Theoretical and measured curves

Linearly variable filters Narrow bandpass filter

- > 23-layer double cavity Fabry Perot : [(H L)² H 2L H (L H)²] L [(H L)² H 2L H (L H)²]
- > H and L are respectively quarter wavelength thicknesses for Nb205 and SiO2 @ 450 nm
- > All the layers are deposited under the non uniformity mask described in the upper part

Linearly variable filters

Narrow bandpass filter

- Dynamic evolution of the transmission as a function of the *x* position
- Theoretical and measured curves

Metal-dielectric filters

OIC Manufacturing contest

Metal-dielectric filters

OIC Manufacturing contest

Metal-dielectric filters

OIC Manufacturing contest

- Alternated high and low index materials (Nb₂O₅/SiO₂) except for layer #67 made with chromium
- No periodicity, and layer thicknesses from 6
 nm to 395 nm
- 8 different monitoring glasses

Optical Interference Coating

- Alternated high and low index materials (Nb₂O₅/SiO₂) except for layer #67 made with chromium
- No periodicity, and layer thicknesses from 6
 nm to 395 nm
- 8 different monitoring glasses

Optical Interference Coating

