ELT, AO, MICADO	The PWF S	PYRCADO	Misalignment	Optical Gain	OG: Getting Sky-ready	Perspectives

Getting to know the Pyramid wavefront sensor for high-order AO systems

Some recipes for performance improvement and risk mitigation

Vincent Deo, 3rd year PhD candidate Supervisors Éric Gendron & Gérard Rousset

Observatoire de Paris - LESIA

Seminar at LAM, Nov. 29th 2018

Laboratoire d'Études Spatiales et d'Instrumentation en Astrophysique

LESIA

université

oservatoire

PARS

ELT, AO, MICADO	The PWFS	PYRCADO	Misalignment	Optical Gain	OG: Getting Sky-ready	Perspectives
00000	0000	000	0000000	000000	000000	000

Introduction: ESO's Extremely Large Telescope, Adaptive Optics and the MICADO instrument

 ELT, AO, MICADO
 The PWFS
 PYRCADO
 Misalignment
 Optical Gain
 OG: Getting Sky-ready
 Perspectives

 00000
 0000
 000
 00000000
 00000000
 00000000
 00000000
 00000000

 The ELT: An upcoming breakthrough in ground astronomy

ESO is building the largest telescope in the world at Cerro Armazones: 39 m primary mirror, 1 100 $\rm m^2$ collecting surface, sub- 10 mas resolution

20+ years of developments towards *Extremely Large science cases*: Exoplanets - Black Holes - High *z* events - Extragalactic star pop. - Cosmology
 ELT, AO, MICADO
 The PWFS
 PYRCADO
 Misalignment
 Optical Gain
 OG: Getting Sky-ready
 Perspectives

 00000
 0000
 000
 00000000
 00000000
 00000000
 00000000
 00000000

 The ELT: An upcoming breakthrough in ground astronomy

ESO is building the largest telescope in the world at Cerro Armazones: 39 m primary mirror, 1 100 $\rm m^2$ collecting surface, sub- 10 mas resolution

Working through Extremely Large technological challenges:

Segmented M1 (798 pieces) - 2.4 m adaptive M4 + M5 - New instruments; Everything scales up !

 ELT, AO, MICADO
 The PWFS
 PYRCADO
 Misalignment
 Optical Gain
 OG: Getting Sky-ready
 Perspectives

 000000
 0000
 0000
 00000000
 00000000
 00000000
 00000000

 A quick AO recap:
 Why astronomers hate the atmosphere
 00000000
 00000000
 00000000

- Ground telescopes observe through the atmosphere.
- The atmosphere *ruins* image quality.

Short exposure: λ/D speckles in a λ/r_0 area.

Long exposure: A big λ/r_0 spot.

No atmosphere: A sharp λ/D spot.

For the ELT in near infrared: separation power reduced by \approx 200. Atmosphere essentially makes the telescope useless!

 ELT, AO, MICADO
 The PWFS
 PYRCADO
 Misalignment
 Optical Gain
 OG: Getting Sky-ready
 Perspectives

 000-000
 000
 000
 000
 000
 000
 000
 000

 A quick AO recap:
 How astronomers made telescopes useful again
 000
 000
 000
 000

Adaptive Optics: engineering-astronomy crossover for canceling atmospheric effects

- Conceived in 50s (Babcock '53)
- First "On-sky" early 1980s
- First "Science grade" system in the 90s

AO systems scale quickly with tel. size Engineering needs to follow up:

- RTCs (Optimizing soft and hard)
- DMs (Materials, surface, response)
- WFS (Concepts, optics, algorithms)

 ELT, AO, MICADO
 The PWFS
 PYRCADO
 Misalignment
 Optical Gain
 OG: Getting Sky-ready
 Perspectives

 000000
 000
 000
 000
 0000000
 0000000
 0000000
 0000000

 LESIA's involvement in the ELT: the MICADO SCAO system
 00000000
 0000000
 0000000
 0000000

MICADO - Multi AO Imaging Camera for Deep Observations

First light imager for the ELT

- Near IR (.8 2.4 μm)
- FOV 1 arcmin^2
- Astrometric imaging, spectroscopy, high-contrast coronagraphy
- 2 AO modes:
 - MOAO ← MAORY relay (wide field, high sky coverage)
 - SCAO ← LESIA AO team (top perf., reduced sky coverage)

ELT, AO, MICADO	The PWFS	PYRCADO	Misalignment	Optical Gain	OG: Getting Sky-ready	Perspectives
000000	0000	000	0000000	0000000	000000	000
SCAO WFS path	n design					

Early on:

- the WFS is a critical subsystem
- Sensitivity & sky coverage requirements oblige to a PWFS

Current design of the SCAO WFS arm

ELT, AO, MICADO 00000●	The PWFS 0000	PYRCADO 000	Misalignment 00000000	Optical Gain 0000000	OG: Getting Sky-ready	Perspectives
SCAO WFS path	n design					

Early on:

- the WFS is a critical subsystem
- Sensitivity & sky coverage requirements oblige to a PWFS

Therefore, the plan was to:

- Step up our wavefront sensing game
- Start Pyramid R&D
- Hire PhD students

Current design of the SCAO WFS arm

ELT, AO, MICADO	The PWFS	PYRCADO	Misalignment	Optical Gain	OG: Getting Sky-ready	Perspectives
000000	0000	000	0000000	000000	000000	000

The Pyramid Wavefront Sensor

A wavefront sensor? An optical transform from phase to camera-readable information. Yet, a good one is better !

This sensitivity improvement (= coverage, = Strehl) is the sufficient argument to us: WFS baseline = Pyramid.

 ELT, AO, MICADO
 The PWFS
 PYRCADO
 Misalignment
 Optical Gain
 OG: Getting Sky-ready
 Perspectives

 000000
 000
 000
 0000000
 0000000
 0000000
 0000000
 0000000

 The Pyramid with ray optics:
 phase-encoding pupil images
 0000000
 0000000
 0000000
 0000000

Wavefront error = missing the focus Rays above/below focus refracted in different pupil images 4 pupil images are formed. Pixel intensity depends on where the ray hits the prism.

 \rightarrow intensity \propto phase grad.

ELT, AO, MICADO	The PWFS	PYRCADO	Misalignment	Optical Gain	OG: Getting Sky-ready	Perspectives
000000	0000	000	00000000	0000000	000000	000
But what are rea	ally Pyramic	l signals ?				

PWFS - Quadrant registration

 S_x , S_y slopes map for the reference point.

Ragazzoni '96: Ray optics – Modulation-tuned gradient sensor with neat saturation. Vérinaud '04: 1-D derivations – gradient or phase sensor across frequency range. Fauvarque '16: The PWFS & $[S_x, S_y]$ have an OTF \rightarrow Convolutional algos are OK ?

Need to investigate models, meaning, and critical points for ELT ops. E.g.:

Pixel misalignments \rightarrow led to Deo et al., 2018 Handling variable sky conditions \rightarrow my current research

ELT, AO, MICADO	The PWFS	PYRCADO	Misalignment	Optical Gain	OG: Getting Sky-ready	Perspectives
000000	0000	•00	0000000	0000000	000000	000

A little detour: the PYRCADO testbed at LESIA

ELT, AO, MICADO 000000	The PWFS 0000	PYRCADO ○○●	Misalignment 00000000	Optical Gain 0000000	OG: Getting Sky-ready	Perspectives
PYRCADO testb	ed demo					

ightarrow PYRCADO operating \leftarrow

ELT, AO, MICADO	The PWFS	PYRCADO	Misalignment	Optical Gain	OG: Getting Sky-ready	Perspectives
000000	0000	000	0000000	000000	000000	000

My PhD research, Ep. 1:

Pyramid misalignements & prism defects

ELT, AO, MICADO	The PWFS	PYRCADO	Misalignment	Optical Gain	OG: Getting Sky-ready	Perspectives
000000	0000	000	0000000	0000000	000000	000
It all began with	some little	bench issue	S			

With modulation

So much wrong here !

Without modulation, right on the "pin"

How to fix it ? How to live with it ?

ELT, AO, MICADO	The PWFS	PYRCADO	Misalignment	Optical Gain	OG: Getting Sky-ready	Perspectives
000000	0000	000	0000000	0000000	0000000	000
Misfabrications a	nd misalignr	nents				

Many possible prism fabrication errors cause:

- Zero point quadrant flux variations
- Non-square quadrant layout

Theoretical *perfect* PWFS requires:

- Perfect rectangle layout
- Identical quadrant flux
- Integer pixel spacing between quadrants

A, B, C, D pixels must match exactly for PWFS validity.

How tight is specification: 1/10th pixel ?

Software quadrant fit and center select: 3/4 px. guaranteed. Hardware accelerated processing: offset may be larger. \rightarrow Impact study of free translations of all 4 quadrants.

 ELT, AO, MICADO
 The PWFS
 PYRCADO
 Misalignment
 Optical Gain
 OG: Getting Sky-ready
 Perspectives

 0000
 000
 000
 000
 0000000
 0000000
 0000000
 0000000

 Expanded Space control: introducing some new slopes
 000
 000
 000
 000
 000

Traditional gradient control slopes:

$$\begin{bmatrix} S_x \\ S_y \end{bmatrix} (x, y) = \begin{bmatrix} 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \end{bmatrix} \cdot \begin{bmatrix} A \\ B \\ C \\ D \end{bmatrix} (x, y)$$

Why not use the cross term since symmetry is broken ?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - の々で…

 ELT, AO, MICADO
 The PWFS
 PYRCADO
 Misalignment
 Optical Gain
 OG: Getting Sky-ready
 Perspectives

 0000
 000
 000
 000
 0000000
 0000000
 0000000
 0000000

 Expanded Space control: introducing some new slopes
 000
 000
 000
 000
 000

Traditional gradient control slopes:

$$\begin{bmatrix} S_x \\ S_y \end{bmatrix} (x, y) = \begin{bmatrix} 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \end{bmatrix} \cdot \begin{bmatrix} A \\ B \\ C \\ D \end{bmatrix} (x, y)$$

Why not use the cross term since symmetry is broken ? Expanded slope space:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - の々で…

Misalignment test case:

 $x_A, y_A = -0.24, +0.46$ $x_B, y_B = +0.28, -0.49$ $x_C, y_C = -0.17, +0.38$ $x_D, y_D = +0.45, -0.47$

• All offsets ≤ 0.5 pixels

For pupils of 55 px with 100 px separation, is equivalent to specs of:

- 2% tol. in refraction angle
- 12 mrad rotation of the prism

SR: 0.605

Wavefront error: 196.1 nm RMS

With $[S_x, S_y]$: a portion of the correction zone is lost.

Misalignment test case:

 $x_A, y_A = -0.24, +0.46$ $x_B, y_B = +0.28, -0.49$ $x_C, y_C = -0.17, +0.38$ $x_D, y_D = +0.45, -0.47$

• All offsets ≤ 0.5 pixels

For pupils of 55 px with 100 px separation, is equivalent to specs of:

- 2% tol. in refraction angle
- 12 mrad rotation of the prism

With $[S_x, S_y, S_z, S_f]$:

Full correction is achieved !

1 - Perfectly aligned PWFS: S_z , S_f void of information

Perfect alignment

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Strong misalignment

<ロ> < ② > < 三 > < 三 > < 三 > の へ ? 17/32

 ELT, AO, MICADO
 The PWFS
 PYRCADO
 Mitalignment
 Optical Gain
 OG: Getting Sky-ready
 Perspectives

 0000000
 0000
 0000000
 0000000
 0000000
 0000000
 0000000

 Upon this: generalizing the misalignment and ESC approach
 ESC approach
 00000000
 0000000
 0000000

We conducted a detailed analysis of what the misalignment does to the useful information to retrieve the phase (the *original* S_x , S_y)

- For a perfect alignment, the phase information is completely in $S_x \& S_y$
- Yet with summit defect / misalignment, this info is spread in all 4 terms
- Using all 4 S_x , S_y , S_z , S_f is equivalent to having a perfect PWFS regardless of the alignment.

 ELT, AO, MICADO
 The PWFS
 PYRCADO
 Mitalignment
 Optical Gain
 OG: Getting Sky-ready
 Perspectives

 0000000
 0000
 0000000
 0000000
 0000000
 0000000
 0000000

 Upon this: generalizing the misalignment and ESC approach
 ESC approach
 0000000
 0000000
 0000000

We conducted a detailed analysis of what the misalignment does to the useful information to retrieve the phase (the *original* S_x , S_y)

- For a perfect alignment, the phase information is completely in $S_x \& S_y$
- Yet with summit defect / misalignment, this info is spread in all 4 terms
- Using all 4 S_x , S_y , S_z , S_f is equivalent to having a perfect PWFS regardless of the alignment.

And in conclusion of this study:

- We will need twice the RTC computing power to use all 4 slopes maps
- We can skip the P transform altogether and feed all illuminated pixels to the RTC
- Yet, the SNR is unaffected: same number of pixels read, identical noise propagation
- We can relax the specs of the prism design a lot: 0.1 px. \rightarrow 0.5 px. or even more.

CCD pupil positioning is not a first order design constraint anymore.

ELT, AO, MICADO	The PWFS	PYRCADO	Misalignment	Optical Gain	OG: Getting Sky-ready	Perspectives
000000	0000	000	0000000	•000000	000000	000

Episode 2:

A critical nonlinearity issue: Optical Gain Modelization and numerical investigations

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q · 18/32

ELT, AO, MICADO	The PWFS	PYRCADO	Misalignment	Optical Gain	OG: Getting Sky-ready	Perspectives
000000	0000	000	0000000	000000	000000	000
Nonlinearities: th	e Optical Ga	in (OG)				

Critical to understand and compensate:

- Getting some/more performance in bad seeing
- Using the pyramid with NCPAs

ELT, AO, MICADO	The PWFS	PYRCADO	Misalignment	Optical Gain	OG: Getting Sky-ready	Perspectives
000000	0000	000	0000000	000000	000000	000
Nonlinearities: th	e Optical Ga	in (OG)				

Critical to understand and compensate:

- Getting some/more performance in bad seeing
- Using the pyramid with NCPAs

ELT, AO, MICADO	The PWFS	PYRCADO	Misalignment	Optical Gain	OG: Getting Sky-ready	Perspectives
000000	0000	000	0000000	000000	000000	000
Nonlinearities: th	e Optical Ga	iin (OG)				

Critical to understand and compensate:

- Getting some/more performance in bad seeing
- Using the pyramid with NCPAs

Astigmatism signal 60 % lower due to operating conditions !

ELT, AO, MICADO	The PWFS	PYRCADO	Misalignment	Optical Gain	OG: Getting Sky-ready	Perspectives
000000	0000	000	0000000	000000	000000	000
Nonlinearities: th	e Optical Ga	ain (OG)				

Critical to understand and compensate:

- Getting some/more performance in bad seeing
- Using the pyramid with NCPAs

Astigmatism signal 60 % lower due to operating conditions ! Parasite signal of 5 % added on top !

ELT, AO, MICADO	The PWFS	PYRCADO	Misalignment	Optical Gain	OG: Getting Sky-ready	Perspectives
000000	0000	000	0000000	000000	000000	000
Nonlinearities: th	e Optical Ga	in (OG)				

Critical to understand and compensate:

• Getting some/more performance in bad seeing

(ロト・日本)・(国)・(国)・ 国 のへで 19/32

• Using the pyramid with NCPAs

Astigmatism signal 60 % lower due to operating conditions ! Parasite signal of 5 % added on top !

Increase the controller gain by 2.5 ?

 ELT, AO, MICADO
 The PWFS
 PYRCADO
 Misalignment
 Optical Gain
 OG: Getting Sky-ready
 Perspectives

 000000
 000
 000
 000
 000
 000
 000
 000

 Optical Gain Modal Compensation (OGMC) - Objective of the approach
 000
 000
 000
 000

Rec: flat-phase modal command matrix

Update **Rec** with:

Using the KL basis of the DM
$$\mathrm{KL}_1$$
 ... KL_N

Find compensation coefficients $G_{opt}(KL_i)$. (dep. on the WFS state, atmos. conditions, ...)

$$\operatorname{\mathsf{Rec}}[\operatorname{OGMC}] = egin{bmatrix} G_{\operatorname{opt}}(\operatorname{KL}_1) & 0 \ & \ddots & \ & 0 & G_{\operatorname{opt}}(\operatorname{KL}_N) \end{bmatrix} \cdot \operatorname{\mathsf{Rec}}$$

 \rightarrow Each mode of basis compensated appropriately

Problem solved ? How to get the G_{opt} ?

◆□ → < □ → < ≧ → < ≧ → ≧ の Q ⁽²⁾ 20/32

Let ${\boldsymbol{c}}$ be a DM mode

 ELT, AO, MICADO
 The PWFS
 PYRCADO
 Misalignment
 Optical Gain
 OG: Getting Sky-ready
 Perspectives

 000000
 0000
 0000
 0000000
 0000000
 0000000
 0000000
 000

 Reconstruction with optical gain - DM space analysis
 DM space analysis
 DM space analysis
 00000000
 0000000

Let ${\boldsymbol{c}}$ be a DM mode

Some phase residual + push-pull of $\pm c$: PWFS reconstructs $d \neq c$

Colinear component $\mathbf{d}_{\parallel} = \gamma \times \mathbf{c}$ γ : sensitivity loss factor

Disturbing component d_{\perp}

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

 ELT, AO, MICADO
 The PWFS
 PYRCADO
 Misalignment
 Optical Gain
 OG: Getting Sky-ready
 Perspectives

 000000
 0000
 0000
 00000000
 00000000
 00000000
 00000000

 Reconstruction with optical gain - DM space analysis
 DM space analysis
 00000000
 00000000
 00000000

Let ${\boldsymbol{c}}$ be a DM mode

Some phase residual + push-pull of $\pm c$: PWFS reconstructs $d \neq c$

Colinear component $\mathbf{d}_{\parallel} = \gamma \times \mathbf{c}$ γ : sensitivity loss factor

Disturbing component d_{\perp}

Good rescaling for ϕ around ϕ_{ref} :

 $G_{\rm opt}$ such that $\overrightarrow{err_{\rm OGMC}}$ is minimal

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

 ELT, AO, MICADO
 The PWFS
 PYRCADO
 Misalignment
 Optical Gain
 OG: Getting Sky-ready
 Perspectives

 000000
 0000
 000
 0000000
 0000000
 0000000
 0000000
 000

 Reconstruction with optical gain - DM space analysis
 DM space analysis
 DM space analysis
 00000000
 00000000

Let ${\boldsymbol{c}}$ be a DM mode

Some phase residual + push-pull of $\pm c$: PWFS reconstructs $d \neq c$

Colinear component $\mathbf{d}_{\parallel} = \gamma \times \mathbf{c}$ γ : sensitivity loss factor

Disturbing component \mathbf{d}_{\perp}

Good rescaling for ϕ around ϕ_{ref} :

 ${\it G}_{
m opt}$ such that $\overrightarrow{err_{
m OGMC}}$ is minimal

Quantities to analyse:

 $\begin{array}{l} \mbox{Error without OGMC: } E_{\rm Rec} \\ \mbox{Error after OGMC: } E_{\rm OGMC} \end{array}$

- both dimensionless, in units of $||\boldsymbol{c}||$ -

 $\textbf{OGMC} \equiv \textbf{Optical Gain Modal Compensation}$

ELT, AO, MICADO 000000	The PWFS 0000	PYRCADO 000	Misalignment 00000000	Optical Gain 0000●00	OG: Getting Sky-ready	Perspectives
Simulation para	meters					

Numerical sim	ulations configuration
Telescope	D = 18.0 m diameter
Turbulence lover	Single Von-Karmann GL
Turbulence layer	Selectable $r_0 - L_0 = 25 \text{ m}$
Source	On-axis natural guide star
Loop rate	500 Hz (200 Hz)
	39×39
DM	pitch = 47 cm
	1,177 KL modes
Subap.	61×61
Measurements	all illuminated pixels
$\lambda_{ m PWFS}$	658 nm
PWFS modulation	Circular; selectable $r_{ m Mod}$.
Noise	0.3 e ⁻
Controller	Modal integrator
Controller	2 frames latency
$\lambda_{ m Science}$	1,650 nm

Note: all r_0 in this talk given at 500 nm. $r_0 \rightarrow r_0 \rightarrow$

 γ - depends only on r_0 - less than 3% variation with turbulence realization. $E_{\text{Rec}} \longrightarrow E_{\text{OGMC}}$ - Dramatic nonlinearity error reduction for low & mid orders.

◆□ → ◆□ → ◆ 三 → ▲ 三 · ⑦ Q ⑦ 23/32

 ELT, AO, MICADO
 The PWFS
 PYRCADO
 Misalignment
 Optical Gain
 OG: Getting Sky-ready
 Perspectives

 000000
 000
 000
 0000000
 0000000
 0000000
 000
 000

 End-to-end OGMC comparative performance – for static and known r₀
 0000000
 0000000
 0000000
 0000000

Eliminate loop gain contribution Top H-band Strehl performance What does OGMC bring on top of it ? 12.9 cm 10.0 cm 8.0 cm ro — Scalar (500Hz) 71 47 23 Finding out with simulations — OGMC (500Hz) 35 74 57 Loop gain sweep: 0.1 - 2.0. - - - Scalar (200Hz) 32 10 3 $r_{\rm Mod} = 4\lambda/D$ - - - OGMC (200Hz) 52 32 17 Without noise:

∞ 24/32

 ELT, AO, MICADO
 The PWFS
 PYRCADO
 Misalignment
 Optical Gain
 OG: Getting Sky-ready
 Perspectives

 000000
 000
 000
 0000000
 0000000
 0000000
 0000000
 000

 End-to-end OGMC comparative performance – for static and known r₀
 000
 000
 000
 000
 000

Eliminate loop gain contribution What does OGMC bring on top of it ?

Finding out with simulations Loop gain sweep: 0.1 – 2.0, $r_{\rm Mod} = 4\lambda/D$

- Performance is always increased
- Gain at best S.R. is stable at 0.4.
- Most gain for bright stars in poor seeing \rightarrow expected increase of useful tel. time

But:

• We knew the seeing & it never changed

24/32

Without noise:

ELT, AO, MICADO	The PWFS	PYRCADO	Misalignment	Optical Gain	OG: Getting Sky-ready	Perspectives
000000	0000	000	0000000	000000	000000	000

Episode 3:

A method for on-sky operations: Poking some modes for automatic compensation updates

ELT. AO. MICADO The PWFS PYRCADO Misalignment **Optical Gain** OG: Getting Sky-ready Perspectives 0000000 Abagus interpolation - Measuring all modes Still $r_{Mod} = 8\frac{\lambda}{D}$, Mag_R = 16, $r_0 = 12.9$ cm Abaqus obtained from numerical simulations once. At most 1-2 d. calculations for ELT model. 10¹ 5.0 *r*₀ (cm) 5.5 Convert known G_{\parallel} to matching G_{opt} value. Update the reconstructor with the newest modal gains. 6×10^{0} 6.1 6.7 7.4 4×10^{0} G_{opt}(KL i) 8.2 9.1 3×10^{0} 10.0 11.0 2×10^{0} 18:1 r_0 (cm) 10⁰ Ó 200 400 600 800 1000 26/32 KL #

 ELT, AO, MICADO
 The PWFS
 PYRCADO
 Misalignment
 Optical Gain
 OG: Getting Sky-ready
 Perspectives

 000000
 000
 000
 00000000
 00000000
 00000000
 00000000
 00000000

 Abagus interpolation - Measuring all modes
 00000000
 00000000
 00000000
 00000000
 00000000

Another example: $r_{\text{Mod}} = 2\frac{\lambda}{D}$, Mag_R = 16, $r_0 = 12.9$ cm

 $r_0 = 10.0$ cm (constant, unknown to the AO), $r_{\rm Mod} = 6\frac{\lambda}{D}$, $Mag_{\rm R} = 16$. Step 0: set all OGMC coefficients to 1., set integrator gain to bandwidth-optimal 0.4

 $r_0 = 10.0$ cm (constant, unknown to the AO), $r_{\rm Mod} = 6 \frac{\lambda}{D}$, $Mag_{\rm R} = 16$. Step 1: After 1 pass of mode poking for .5 sec

 $r_0 = 10.0$ cm (constant, unknown to the AO), $r_{\rm Mod} = 6\frac{\lambda}{D}$, Mag_R = 16. Step 2: After 2 passes.

 $r_0 = 10.0$ cm (constant, unknown to the AO), $r_{\rm Mod} = 6\frac{\lambda}{D}$, ${\rm Mag}_{\rm R} = 16$. Step 3: After 3 passes. Bootstrap is stable and completed

 $r_0 = 10.0$ cm (constant, unknown to the AO), $r_{\rm Mod} = 6\frac{\lambda}{D}$, ${\rm Mag}_{\rm R} = 16$. Much later: after 50 passes, randomly resetting the atmosphere each time.

ELT. AO. MICADO The PWFS PYRCADO Misalignment **Optical Gain** OG: Getting Sky-ready Perspectives 0000000 When r_0 varies wildly/widely: poke & update every minute for 6% r_0 variation steps

ELT, AO, MICADO	The PWFS	PYRCADO 000	Misalignment 00000000	Optical Gain	OG: Getting Sky-ready 00000€0	Perspectives
Performance du	ring the pok	king cycle				

Bright star - $r_0 = 10$ cm

LE PSF across 500 msec. poke cycle

Nominal LE SR: 55±3%

 $\mathrm{Mag}_\mathrm{R} = 16$ - $r_0 = 12.9$ cm

LE PSF across 500 msec. poke cycle

Nominal LE SR: 54±4%

 ELT, AO, MICADO
 The PWFS
 PYRCADO
 Misalignment
 Optical Gain
 OG: Getting Sky-ready
 Perspectives

 0000000
 0000
 00000000
 00000000
 00000000
 00000000
 00000000

 Optical gain and the tracking method: summary
 summary

On optical gain:

- Small signal component of nonlinearity
- KL basis a fitting candidate for this model

On the OGMC method:

- Large reduction of nonlin. error for low orders
- Valuable increase in end-to-end perf.

On the poking method:

- Performance comparable to when r_0 is known/static
- Stable across very long durations & large seeing changes
- Little interference with science

Next up: integrate the algorithm into the MICADO RTC prototype

Upgrade simulations to ELT-sized problems

Run complete batches on PYRCADO

And: investigate better/other models non-small signal nonlinearity !

ELT, AO, MICADO	The PWFS	PYRCADO	Misalignment	Optical Gain	OG: Getting Sky-ready	Perspectives
000000	0000	000	0000000	000000	000000	● 00

Perspectives

<□▶ < @▶ < 볼▶ < 볼▶ 볼 ∽ 역 30/32

ELT, AO, MICADO	The PWFS	PYRCADO	Misalignment	Optical Gain	OG: Getting Sky-ready	Perspectives
000000	0000	000	0000000	000000	000000	000
CANARDO: Goir	ng on-sky					

Objectives:

- Validating all our recipes, algorithms, calibrations on sky
- Validating the expected performance of the -almost- complete MICADO SCAO WFS+RTC
- Being exposed to real, changing conditions which were not conceived in the lab.

Set up:

- Leveraging existing CANARY bench at William Herschel Telescope (4.2 m, Canary Islands)
- Using Engineering models of WFS and RTC
- R&D DM ALPAO 64×64

Target: On-sky 2021

An ELT SCAO on a 4.2 m: **serious** performance is expected

ELT, AO, MICADO	The PWFS	PYRCADO	Misalignment	Optical Gain	OG: Getting Sky-ready	Perspectives
000000	0000	000	0000000	0000000	000000	000

I hope these Pyramid recipes gave you some appetite for more!

