

STScI | SPACE TELESCOPE SCIENCE INSTITUTE

EXPANDING THE FRONTIERS OF SPACE ASTRONOMY

Multi-aperture telescope alignment: PSF stacking with ELASTIC

Iva Laginja Marseille, November 8, 2018

Supervisors: Rémi Soummer (STScI), Jean-Francois Sauvage (ONERA/LAM), Laurent Mugnier (ONERA)

- The Makidon lab:
 - Who are we and what do we do
- High Contrast imager for complex Aperture Telescopes \rightarrow HiCAT
 - Coronagraphy and WFS&C for LUVOIR
- JWST Optical Simulation Testbed \rightarrow JOST
 - Wavefront sensing and control for segmented apertures
- Estimation of Large Amplitude Subaperture Tip-tilt by Image Correlation: ELASTIC

The Russel B. Makidon Optics Laboratory

Space Telescope Science Institute

- Science Operations Center for Hubble
- Science and Mission Operations Center for James Webb Space Telescope
- MAST Mikulski Archive for Space Telescopes
 - Hubble, JWST, Kepler, K2 and others

Rémi Soummer (PI) Iva Laginja Kathryn St Laurent Peter Petrone Greg Brady Tom Comeau Marshall Perrin Laurent Pueyo Anand Sivaramakrishnan

Have left: Christopher Moriarty Lucie Leboulleux Keira Brooks Johan Mazoyer Kevin Fogarty

New: Jules Fowler

Wide range of skills: scientists, software engineers, technical support, IT, admin, ...

Ultimate goal: imaging of terrestrial exoplanets from space

- Small angular separation requires big primary mirrors → segmentation
- Deal with **aberrations** stemming from segmentation JOST testbed
- Segmentation introduces complexity in high contrast imaging system
- Need to work around those complexities while trying to reach contrast of 10⁻¹⁰ – HiCAT testbed

High contrast imager for Complex Aperture Telescopes HiCAT

High contrast imager for Complex Aperture Telescopes (HiCAT)

HiCAT is specifically for space telescopes that will have segments, secondary mirrors supports and other complex apertures

- Currently being built for LUVOIR architectures but could also be used for some HABEX architectures
- Includes a Apodized Pupil Lyot Coronagraph (APLC)
- Uses a variety of Deformable Mirrors (DMs) to actively control the suppression of light and wavefront variations

ΝΑSΑ

Lab blog: http://stsci-makidon-optics-lab.blogspot.com

Class 10000/1000 cleanrooms \rightarrow bunny suits!

High contrast imager for Complex Aperture Telescopes (HiCAT)

HiCAT

"... the solution is the pupil apodization which produces the most concentrated star light behind a given focal plane mask (and thus blocked)" – Soummer et al.

HiCAT – The Coronagraph + Wavefront Control/Speckle Suppression

same view

- Flexible swapping of components (apodizer, FMP, DMs) ~1 day with recalibration
- Ready for integration of different dark hole digging techniques: e.g. speckle nulling, EFC
- WFS&C: COFFEE, OPeRA

Current contrast: 10⁻⁶

For 10⁻¹⁰ contrast, we need **10-100 pm wavefront residual**:

- Demonstrate **sub-nm phasing of segments** with coronagraphic wavefront sensors: COFFEE, pair-wise
- Improving the dark hole contrast with nulling methods: electric field conjugation (EFC), speckle nulling, non-linear dark hole

Wavefront sensing and control for segmented apertures: James Webb Space Telescope Optical Simulation Testbed -JOST

JWST Optical Simulation Testbed (JOST)

→ Wavefront sensing and control for segmented apertures

JWST Optical Simulation Testbed (JOST)

JWST-like pupil

- Laser cut pupil mask of JWST pupil
- Struts are about 200 microns wide
- Conjugated with Iris AO segmented mirror
- Limits the Iris AO to the 19 segments we need for JWST optical simulation

Segmented mirror

- 37-segment Iris AO segmented deformable mirror
- Segments controllable in piston, tip, tilt
- Segment gaps of 10 microns
- Segment diameter 1.4 mm
- Segment size to gap ration same like on JWST!
- Has couple of dead segments, but we have a sub-area on it with 19 active segments that we need (defined by conjugated pupil mask, see previous slide)

0000000

0

0

O

O

0

00

O

0

-

Laser input 638 nm

Telescope simulator

Total degrees of freedom of JOST = 59 vs. JWST = 131

JOST pupil image

JOST focal plane image

PSF stacking: Estimation of Large Amplitude Subaperture Tip-tilt by Image Correlation - ELASTIC

- ELASTIC: PSF stacking in one single step with **image correlation**
- PhD thesis Sebastien Vievard at ONERA
- Publications: Vievard et al. 2016 (SPIE), 2017 (JOSAA)

- ELASTIC: PSF stacking in one single step with **image correlation**
- PhD thesis Sebastien Vievard at ONERA
- Publications: Vievard et al. 2016 (SPIE), 2017 (JOSAA)

- ELASTIC: PSF stacking in one single step with **image correlation**
- PhD thesis Sebastien Vievard at ONERA
- Publications: Vievard et al. 2016 (SPIE), 2017 (JOSAA)

- ELASTIC: PSF stacking in one single step with **image correlation**
- PhD thesis Sebastien Vievard at ONERA
- Publications: Vievard et al. 2016 (SPIE), 2017 (JOSAA)

- ELASTIC: PSF stacking in one single step with **image correlation**
- PhD thesis Sebastien Vievard at ONERA
- Publications: Vievard et al. 2016 (SPIE), 2017 (JOSAA)

(Pseudo-)defocused image:
approximating a global
defocus by local segment-level
tips and tilts
→ Distinguishable shifts of
sub-PSFs

PSF stacking with **ELASTIC**

Image correlation of focus and defocus image:

Inter-terms change with aberration

Auto-terms change with diversity

→ Make aberration info show up in auto-terms?

PSF stacking with **ELASTIC**

Image correlation of focus and defocus image:

Inter-terms change with aberration

Auto-terms change with diversity

→ Make aberration info show up in auto-terms?

Inter-terms change

PSF stacking with **ELASTIC**

Image correlation of focus and defocus image:

Inter-terms change with aberration

Auto-terms change with diversity

→ Make aberration info show up in auto-terms?

Inter-terms already changed

This local phase constant can be used to connect auto-terms with according segments

(We ignore the inter-terms)

- Limited by segmented mirror stroke
- Introduced "hybrid defocus" → global defocus by camera shift and pseudo-defocus with mirror segments
- Global defocus supports getting sub-PSFs apart, but it also smears them out

Test: Can we go from superimposition to "parking position"?

Test: Can we go from superimposition to "parking position"?

Iteration 1

Iteration 2

Iteration 5

Test: Can we go from superimpos

Iteration 1

Iteration 2

Iteration 5

Test: Can we go from superimposition to "parking position"? \rightarrow Nope.

Test: Can we go from superimposition to "parking position"? \rightarrow Nope.

Solution: enhance ELASTIC \rightarrow ELASTICS

ELASTIC on JOST

 \rightarrow Make use of the inter-terms in image correlation

→ Won't need the big parking position that uses up all the stroke

- HiCAT and JOST are versatile testbeds for WFS&C and high contrast imaging for segmented telescopes
- ELASTIC facing difficulties on JOST because of limited segmented mirror stroke
- Implementation of enhanced ELASTICS underway