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Outline:
• Fourier-based wavefront sensors in astronomical

Adaptive Optics

• Underlying mathematical models

• Model-based wavefront reconstruction methods

Credit: NASA
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ELT - the world’s biggest eye on the sky

• Austrian scientific contribution:
"Mathematical algorithms and software for ELT adaptive optics"

• Austrian Adaptive Optics (AAO) team in Linz
• ELT instruments METIS & MICADO

Credit: ESO
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Austrian Adaptive Optics
working on:

• wavefront reconstruction for
ELTs

• Shack-Hartmann and pyramid
WFS

• atmospheric tomography

• PSF reconstruction

• optimal control

• ...

https://www.facebook.com/TomographyAcrossTheScales/
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Adaptive Optics (AO)

Adaptive Optics is a technique for correcting optical distortions arising
during the imaging process ∼ hardware based real-time deblurring

components of AO system:

• deformable mirrors

• wavefront sensors

• control system
→ inverse problem

Credit: C. Max

V. Hutterer Wavefront reconstruction for Fourier-based sensors



Johannes Kepler University – Industrial Mathematics Institute

Inverse problem of wavefront reconstruction

Wavefront sensors (WFSs) provide intensity measurements which are
related in a (non-linear) way to the wavefront of the incoming light.

WFS unpredictable
operator noise

↓ ↓
s = W Φ + η.
↖ ↖

WFS incoming
measurements phase

Restoration of the unknown wavefront from given sensor measurements
and further calculation of optimal mirror deformation is an

inverse problem.
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Fourier filtering optical system

Credit: O. Fauvarque

I (x , y) =
∣∣F−1 (OTF · F

(
XΩe−iΦ))∣∣2
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ıQuad wavefront sensor:
a new Fourier-based WFS

• derived from the 4-quadrants coronagraph
• focal plane is devided into 4 quadrants around the origin
• each quadrant is π/2 shifted with its 2 neighbours

Transparency function of the 4-quadrants sensing mask
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Pyramid wavefront sensor:
baseline for many future ELT instruments

Extremely Large Telescope, Very Large Telescope, and the Pyramids of Giza, Credit: ESO
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Pyramid wavefront sensor

Credit: Iu. Shatokhina

• (oscillating) pyramidal prism
• splits light into 4 distinct directions
• 4 intensities are measured
• those can be combined to 2 signals
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Pyramid wavefront sensor (PWFS) measurements

Credit: O. Guyon

modulation of the beam:
• increased linear range
• reduced sensitivity

sx(x , y) =
[I1(x , y) + I2(x , y)]− [I3(x , y) + I4(x , y)]

I0

sy (x , y) =
[I1(x , y) + I4(x , y)]− [I2(x , y) + I3(x , y)]

I0

I0 – average intensity per subaperture
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Different concepts of a pyramid sensor

different configurations of prism:
a) 2-sided (roof) prism
b) 2-sided (roof) prism
c) 3-sided
d) 4-sided
e) 6-sided
f) cone

Credit: B. Engler
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Problem description

Pyramid sensor measuring process:
PΦ = s

(Φ ... incoming wavefront, s ... pyramid sensor measurements)

interaction-matrix-based:
P ... calibrated matrix

This is the benchmark with
respect to quality and speed.

model-based:
P ... non-linear operator

This is the basis of the new
methods.
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How do we model it mathematically?

phase mask model
underlying model

in forward simulations

transmission mask model
underlying model
of reconstructors

Credit: Iu. Shatokhina
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PWFS transmission mask models

Theorem
The relation between pyramid wavefront sensor data with circular
modulation and the incoming phase following the transmission mask
model is given by

sc
x (x , y) =

1
2π
XΩ (x , y)

∫
Ωy

sin[Φ(x ′, y)− Φ(x , y)]J0[αλ(x′ − x)]

x − x ′
dx ′

+
1

2π3XΩy (x , y) p.v .
∫

Ωy

∫
Ωx

∫
Ωx

sin[Φ(x ′, y ′)− Φ(x , y ′′)]f(x ′ − x , y ′ − y ′′)
(x − x ′)(y − y ′)(y − y ′′)

dy ′′dy ′dx ′,

f(~x,~y) :=
1
T

T/2∫
−T/2

cos[αλ~x sin(2πt/T)] cos[αλ~y cos(2πt/T)] dt

and sy accordingly.

J0 ... zero order Bessel function of first kind
αλ ... modulation parameter
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Pyramid WFS without modulation

Theorem
The measurements of the PWFS without modulation are given by

sx(x , y) =
1
2π
XΩ (x , y)

∫
Ωy

sin[Φ(x ′, y)− Φ(x , y)]

x − x ′
dx ′

+
1

2π3XΩy (x , y) p.v .
∫

Ωy

∫
Ωx

∫
Ωx

sin[Φ(x ′, y ′)− Φ(x , y ′′)]

(x − x ′)(y − y ′)(y − y ′′)
dy ′′dy ′dx ′,

assumptions:
• roof wavefront sensor
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Roof WFS approximation

Credit: C. Vérinaud
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Pyramid WFS without modulation

Theorem
The measurements of the PWFS without modulation are approximated by

sx(x , y) ∼ 1
2π
XΩ (x , y)

∫
Ωy

sin[Φ(x ′, y)− Φ(x , y)]

x − x ′
dx ′

assumptions:
• roof wavefront sensor

• substitute four-sided prism by two orthogonally placed
two-sided prisms

• two signal sets sx and sy are independent and contain
information about Φ only in x- and only in y -direction
correspondingly

• small wavefront distortions (as expected in closed loop),
Φ� 1→ sin Φ ' Φ

• without second term
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Preprocessed CuReD (P-CuReD)

assumption: closed loop AO.

P-CuReD = data preprocessing + CuReD

two-step method:

• data preprocessing: transform the PWFS data to SH-like data
according to the analytical relation in the Fourier domain.

• CuReD: apply the CuReD to the modified data.
(CuReD is a very efficient reconstructor for SH WFS, linear
complexity)
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Step 1: data preprocessing [Iu. Shatokhina]

representation of the measurements in the Fourier domain

(Fspyr )(u) = (FΦ)(u) · gpyr (u) · sinc(du)

(Fssh)(u) = (FΦ)(u) · gsh(u) · sinc(du)

u – spatial frequency, d – subaperture size.

Fourier domain relation between the two sensors

(Fssh)(u) = (Fspyr )(u) · gsh/pyr (u), gsh/pyr (u) :=
gsh(u)

gpyr (u)
.

Fourier convolution theorem → relation between the two sensors
in the space domain

ssh(x , y) =
1√
2π

spyr (·, y) ∗
(
F−1gsh/pyr

)
(·)︸ ︷︷ ︸

psh/pyr (x)

.
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Step 1: data preprocessing [Iu. Shatokhina]

convolve data set with 1d kernel psh/pyr

ssh(x , y) =
1√
2π

spyr (·, y) ∗ psh/pyr (·).

computationally very cheap, highly parallelizable and pipelinable
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Step 2: application of CuReD [M. Rosensteiner]

28./29. September 2012: CuReD on sky, Herschel telescope

• Las Palmas, Canary Islands (Spain), Roque de los Muchachos (2344m)
• 4.2 m mirror diameter
• successful CuReD-tests of the University of Durham, code from AAO
team
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Quality and speed performance

LE Strehl in K band: MVM and P-CuReD vs. the detected NGS photon flux.

ESO median atmosphere ESO bad/good atmospheres
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P-CuReD on the LOOPS bench

• application of a model-based reconstructor on LOOPS

• closed the loop for both PWFS with & without modulation

• reconstruction quality comparable to approach with calibrated MVM

Figure: closing the loop on LOOPS with P-CuReD
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Recent ELT adaptions: telescope spiders

• pupil fragmentation & disconnectedness of data (wavefront information)

• differential piston effects between the segments

• if not properly handled extremely poor wavefront reconstruction

Figure: residual phase in radians (K-band)

How much quality do we loose in the presence of spiders?
How can we make existing reconstruction methods feasible?
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Split Approach

Split Approach =
piston-free WF reconstruction + direct segment piston reconstruction

Requests:
• compoundable with all existing reconstruction methods
• providing high reconstruction quality
• low computational complexity

Split Approach
−−−−−−−−−−−→
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ıQuad wavefront sensor:
first numerical results - "optical" linear Landweber iteration

minimize least-squares functional

J (Φ) : = ||mI (Φ?)− Q(Φ?)||2L2 → min

J ′ (Φ) = Q∗ (QΦ? −mI (Φ?))

linear iterative Landweber algorithm:

Φk+1 = Φk + αQ∗
(
mI (Φ?)− Q(Φk)

)
Φ? is the phase-to-be-measured/reconstructed, Q the wavefront sensor
operator and mI (Φ?) the corresponding meta-intensity.
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ıQuad wavefront sensor:
first numerical results - "optical" linear Landweber iteration

small phases → linear intensity:

Q(φ) ≈ 1
ε
mI (εΦ) with ε << 1

adjoint:
Q = Q∗

linear iterative Landweber algorithm:

Φk+1 = Φk + αQ∗
(
mI (Φ?)− Q(Φk)

)
Φ? is the phase-to-be-measured/reconstructed, Q the wavefront sensor
operator and mI (Φ?) the corresponding meta-intensity.
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ıQuad wavefront sensor:
first numerical results - “optical“ linear Landweber iteration

Left to right: incoming, reconstructed, residual phase.
Top: interaction-matrix-based inversion. Bottom: linear Landweber iteration.
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ıQuad wavefront sensor:
the unseen mode of the ıQuad
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Sensitivity curve for the ıQuad sensor wrt. Zernike modes (left) and the mode (vertical
astigmatism) with the low sensitivity (right).
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Conclusions

• model-based reconstructors are promising alternatives to MVM
approaches
• no calibration of interaction matrix needed
• reconstruction qualities are highly comparable

(in end2end simulations & on testbed)
• adaptions of existing methods to ELT effects is necessary
• possibilities to combine mathematical theory and optical

considerations

Outlook:
• derivation of a general framework for reconstructors of Fourier-based

wavefront sensors
• comparison of “optical“ reconstruction approaches and model-based

implementations
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Thank you for your attention
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