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Convolution vs Fully Connected Layers

Convolution Layers: overcome important limitations of fully connected layers
1. Local connection, shared weights ⇒ drastic reduction in the number of parameters

a) Sparse connectivity: hidden unit only connected to a local patch
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Convolution vs Fully Connected Layers

Convolution Layers: overcome important limitations of fully connected layers
1. Local connection, shared weights ⇒ drastic reduction in the number of parameters

b) Weight sharing: same feature detected across all image positions

▸ Convolution: number of parameters independent of input image size
! ≠ fully connected layers
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Translation-Invariant Feature Detection

▸ Convolution, weight sharing: same feature
detected across all image positions

▸ Very relevant prior for object classification /
scene recognition

▸ Locally connected: useful in some specific
contexts, e.g. face recognition ⇒ following!
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Convolution vs Fully Connected Layers

Convolution Layers: overcome important limitations of fully connected layers

2. Convolution: local spatial structure
▸ Analyses shape/appearance in a local neighborhood
▸ Permutation to input images ⇒ very different local info ⇒ very different convolution maps
⇒ Different classification performances
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Convolution vs Fully Connected Layers

Convolution Layers: overcome important limitations of fully connected layers

3. Convolution: equivariance property
▸ Equivariance: function f (x) equivariant g ⇔ f [g(x)] = g [f (x)]
▸ Convolution equivariant to translation:

T [x(t − τ)] = x(t − τ) ⋆ h(t) = (x ⋆ h)(t − τ) = y(t − τ)
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Convolution vs Fully Connected Layers

Convolution Layers: overcome important limitations of fully connected layers

3. Convolution: translation equivariance
▸ Ensure that deformation, i.e. translation, encoded in maps
▸ Local translation invariance: local pooling ⇒ next !
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Convolution and Non-Linearity

source image I I ⋆Mx ∣I ⋆Mx ∣ (I ⋆Mx)2

▸ Convolution, linear operation for each feature map
▸ Ex: Gradient: Ix = ∂I

∂x ≈ I ⋆Mx , Mx = 1
4 ⋅
⎡⎢⎢⎢⎢⎢⎣

−1 0 1
−2 0 2
−1 0 1

⎤⎥⎥⎥⎥⎥⎦
▸ Followed by point-wise non-linearity
∼ fully connected networks

▸ Detector: large value ⇒ presence of feature
▸ Ex: σ(z) = z2, σ(z) = ∣z ∣
⇒ activate for large > 0 & < 0 Ix values
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Convolution and Non-Linearity

source image I I ⋆Mx Sigmoid ReLU

▸ Other non-linearities: only activate for Ix > 0
▸ Sigmoid (with bias) σ(z) = (1 + e−a(z−b))−1,

a = 8 ⋅ 10−2, b = 50
▸ ReLU (see later) σ(z) = max(0, z)
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Conclusion

▸ Convolution: efficiency, locality, equivariance
▸ Non-linearity: feature detection
▸ Limit number of parameters? Invariance?
Pooling ⇒ following!
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