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Perceptron: (non-)linear Boundaries

Neural Networks for Classification
▸ Logistic Regression: limited to linear decision boundaries
▸ Multi-Layer Perceptron (MLP): non-linear decision functions

Logistic Regression MLP
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MLP: Universal Function Approximators

▸ Neural network with one single hidden layer ⇒ universal approximator
▸ Can represent any function on compact subsets of Rn [Cybenko, 1989]

▸ Approximate any continuous function to any desired precision
▸ Ex pour regression: any function can be interpolated
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MLP: Universal Function Approximators
▸ Neural network with one single hidden layer ⇒ universal approximator

▸ Can represent any function on compact subsets of Rn [Cybenko, 1989]
▸ Ex pour classification: any decision boundaries can be expressed

⇒ very rich modeling capacities
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MLP: Universal Function Approximators

▸ 2 layers, i.e. one hidden layer, is enough

▸ Challenge is NOT fitting training data
▸ Simple models already have very large (infinite)
modeling power

▸ Challenge: optimization, overfitting
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MLP: Universal Function Approximators

▸ 2 layers, i.e. one hidden layer, is enough ... theoretically:
▸ BUT: exponential number of hidden units [Barron, 1993]
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Deep Models: Universal Function Approximators
▸ Deeper Models: less units required to represent the desired function

▸ Functions representable compactly with k layers may require exponentially size with
k − 1 layers [Hastad, 1989, Bengio, 2009]

▸ Same modeling power, fewer parameters
⇒ better generalization!
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Deep Models

Depth improves generalization: multi-digit
recognition, from [Goodfellow et al., 2016]
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Local vs Distributed Representations
▸ Local Representations: one neuron ↔ one concept
▸ Deep Learning ⇒ Distributed Representations:

▸ Each concept ↔ many neurons, each neuron ↔ many concepts
⇒ Exponentially more efficient than local representations

From [Bengio and Delalleau, 2011]
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Deep Learning & Distributed Representations
▸ DL architectures: distributed representations shared across classes

Credit: M.A Ranzato
9/ 11 N. Thome - Deep Modeling



Deep Models: Conclusion

▸ Neural Networks: very large modeling capacities
▸ Simple (shallow) models, i.e. MLP: universal
approximators

▸ Deeper models: same representation power with
more layers but fewer parameters

▸ Local vs distributed representations
▸ Representation Learning with ConvNets
⇒ following!
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