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90's: start of 2"¢ winter for deep learning

History of Deep Learning
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90's: start of 2" winter for deep learning

» Deep neural nets =" black magic’, black boxes
» Lack of interpretability
» Optimization issues for highly non-convex objective function
» Golden age of kernel methods
1. Generalization theory with Support Vector Machines
2. Extension to non-linear modes: kernel trick
3. Convex optimization problem

This is a hyperplane!
(in some space)
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Kernel Methods

1. Generalization Theory with Support Vector Machines (SVM)

» SVM for binary classification: ~ formal neuron with hinge loss
» {5 regularization term ||wl|[2 ~ weight decay:

N
L(w) = %||w||2 + Z max [0, 1- (wa,- + b) y,-*]
-1

» Geometric interpretation:
1/||w|> margin between @®/© classes
» SVM Generalization bounds on test error Espye:

h
Etrve € Etrain + @ (N) N # ex, h VC dimension

= Strong point: theoretical guaranty for SVMs
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Kernel Methods

2. SVM limited to linear boundaries = Kernel Trick:
» Project input data with non-linear injection function ¢
» Solve linear SVM in the induced space
» Kernel Trick: no explicitly computation in induced space required

» Infinite induced spaces possibles, e.g. Gaussian kernel

Spiral Data Classification

%2

4/ 10 N.Thome - DL Winter History



Kernel Methods

3. Even with non-linear kernel = convex optimization problem!
» Efficiently solved, Global minimum
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2000's: Bag of Words Model (BoW)

» Started from the Information Retrieval (IR) community
» Text classification: document as a histogram of word occurrences

BoW : sparse high-dimensional vector
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» Bow representation as input
for powerful classifiers, e.g. SVM
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2000's: Bag of Words Model

» Adapting the BoW model for visual recognition ?
= Bag of Visual Word (BoV)

» Main challenge: definition of visual words unclear!
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» Solution: compute a dictionary on local image
regions (clustering)

» Local regions represented by handcrafted
descriptors, e.g. SIFT
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2000's: Bag of Visual Words Model
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» 2000's: BoW + SVM state-of-the-art
» Many works on kernel on BoW, coding & pooling
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BoW vs ConvNet
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» BoW architecture: ~ 2 [Convolution/Pooling] blocks!
» ConvNet: learned features, deeper hierarchies?
» BUT: not enough training data in the 2000's !
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Deep Learning Winter: Conclusion

» Decline of Deep Neural Nets due to:
» Elegant convex competitors (SVM)
with non-linear boundaries (although not deep)
» Strong handcrafted feature for important applications,
e.g. text, image, speech outperforming deep models

» More data and more power: modern deep learning
= following!
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