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Local Response/Contrast Normalization

É Normalize value wrt spatial neighbors N (i , j)

É Local equalizing effective
É Helps learning more invariant representations
⇒ regularization, better generalization
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Batch Normalization (BN) [Ioffe and Szegedy, 2015]

É Recap init: fixed input distribution known to help training
É Training deep neural networks: distribution of hidden layers unknown, change over

training time ⇒ covariate shift
É Importance of init, e.g. Xavier
É Batch Normalization (BN):
↓ importance of init, ↓ covariate shift
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Batch Normalization (BN) [Ioffe and Szegedy, 2015]
É Normalize input feature distribution ∼ N (0, 1)

É Normalization across each mini-batch:
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É x̂i =
xi−μB
σB+ε - ε for numerical stability

É Is input feature distribution ∼ N (0, 1) good
idea?
É Activation may not ever "saturate",

e.g. sigmoid or tanh
É Keeping in linear regime: depth useless,
∼ global linear model
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Batch Normalization (BN) [Ioffe and Szegedy, 2015]
É Scale and shift: yi = γx̂i + β, (γ, β) trained
É Apply after FC / conv and before non-linearity

É Batch Normalization differentiable
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Batch Normalization (BN) [Ioffe and Szegedy, 2015]
É Applying BN at test time?
⇒ Use train set statistics

É BN Strengths
É Faster training convergence ⚔ covariate shift
É Regularization & generalization
⇒ better performances
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Training: Data-Augmentation

É Jittering, mirroring, color perturbation, rotation,
stretching, shearing, lens distortions, etc of the
original images

É Increases # training samples, adds robustness to
irrelevant variations

É Done in train AND in test
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Training: Droupout [Hinton et al., 2012]
É Randomly omit each hidden unit with probability p, e.g. p = 0.5
É Regularization technique, limits over-fitting (better generalization)

É Prevent co-adaptation, i.e. feature only helpful when other specific features present
É May be viewed as averaging over many NN
É Slower convergence
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Training: Droupout [Hinton et al., 2012]
É Training: dropout layer easily differentiable, freezing some weight updates
É What to do at test time ?

É Sample many different architectures, average output distributions
É Faster alternative: use all hidden units (but after /2 outgoing weights)
É Equivalent to the geometric mean in case of single hidden layer
É Pretty good approximation for multiple layers
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Modern Training & Regularization: Conclusion

É Dropout: important for limiting over-fitting
É Used in AlexNet at ImageNet’12
É Common in current archis, especially in FC layers

É Batch Normalization: especially important for
very deep models, e.g. ResNet

É Architecture evolution since 2012?
⇒ following!
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