
Neural Networks and Deep Learning:
Deep Learning Resources

Nicolas Thome

Conservatoire National des Arts et Métiers (Cnam)
Département Informatique

Deep Learning resources for the community

▸ Deep learning softwares / libraries features:
▸ Build big computational graphs
▸ Compute gradients in computational graphs
▸ GPU Processing

▸ Libraries made available in the community:
▸ MatConvNet (Oxford): easy
▸ Caffe (UC Berkeley) / Caffe2 (Facebook): script

▸ Good for production
▸ Torch (NYU, Facebook) / PyTorch (Facebook)
▸ Theano (U Montreal), TensorFlow (Google)

▸ (py)Torch, Theano, TensorFlow: good for research
▸ Keras (Google): wrapper on top of TensorFlow / Theano
▸ Many others...

1/ 12 N.Thome - Deep Learning Resources

Computation Graphs on Tensors
▸ Tensor: multi-dimensionnal array
▸ Computation Graph: tensor → tensor
▸ Atomic computation on tensor, e.g. matrix multiplication, convolution
Ex: batch matrix multiplication on vectors

2/ 12 N.Thome - Deep Learning Resources

Back-prop on Tensors

▸ Vector representation of tensor-valued functions
simply flattening tensor → vector

▸ Back-prop on tensors?
⇒ simply compute derivative wrt
each flattened tensor element

3/ 12 N.Thome - Deep Learning Resources

Back-prop on Tensors
▸ Simply compute derivative wrt flattened tensor
▸ BUT: direct chain rule application
⇒ big memory & computation issues!
Problem already with last linear layers

4/ 12 N.Thome - Deep Learning Resources

Back-prop on Tensors

▸ Example: batch training for last linear layer
▸ Data matrix X (N ×m), label matrix Ŷ, Y∗ (N ×K)

▸ Cross-entropy loss: LCE(W,b) = − 1
N

N

∑
i=1

log(ŷc∗,i)

⇒ ∂LCE

∂W =? - Ex: m = 4096, N = 100, K = 1000
(ImageNet)

▸ ∂LCE

∂W : size K ⋅ d ≈ 4M params ≈ 32MB memory OK

5/ 12 N.Thome - Deep Learning Resources

Back-prop on Tensors
∂LCE

∂W =? - Ex: m = 4096, N = 100, K = 1000 (ImageNet)

▸ Chain rule: ∂LCE

∂W = ∂LCE

∂S
∂S
∂W

▸
∂LCE
∂S = Ŷ −Y∗ =∆: size K ⋅N = 100K params ≈ 800KB small

▸ BUT: ∂S
∂W size (K ⋅N) ⋅ (K ⋅ d) = 1000 ⋅ 100 ⋅ 1000 ⋅ 4000

= 400G params ≈ 3.2TB huge !!
▸

∂S
∂W : far too large to fit into memory, not explicitly computable

∂S
∂W
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

x1 0 ... 0
0 x1 ... 0
0 0 ... x1

...
xN 0 ... 0
0 xN ... 0
0 0 ... xN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

6/ 12 N.Thome - Deep Learning Resources

Back-prop on Tensors

▸ ∂S
∂W : far too large to fit into memory, not explicitly computable

▸ However, computing ∂LCE

∂W = ∂LCE

∂S
∂S
∂W is tractable!

▸ For a single example: ∂s
∂W =

⎛
⎜
⎝

x 0 ... 0
0 x ... 0
0 0 ... x

⎞
⎟
⎠
, ∂LCE

∂s = δ = (δ1 δ2 ... δK)

⇒ ∂LCE
∂W

= (δ1 δ2 ... δK)
⎛
⎜
⎝

x 0 ... 0
0 x ... 0
0 0 ... x

⎞
⎟
⎠

= (δ1x δ2x ... δKx)

▸ With matrix m ×K reshaping:

∂LCE
∂W

=
⎛
⎜⎜⎜
⎝

x1
xm
...
xm

⎞
⎟⎟⎟
⎠
(δ1 δ2 ... δK) = xT δ

7/ 12 N.Thome - Deep Learning Resources

Back-prop on Tensors
▸ ∂s

∂W intractable but ∂LCE

∂W = ∂LCE

∂s
∂s
∂W tractable

▸ Solution: first project s on δ:

▸ sp = s δT =
K

∑
k=1

skδk =
K

∑
k=1

m

∑
j=1

wjkxkδk

▸ Compute gradient on sp ∈ R:
∂sp

∂W
= (δ1x δ2x ... δKx) =

∂LCE
∂W

▸ Each layer should be able to compute ∂Sp

∂W
▸

∂Sp

∂W = ∂S∆T

∂W tractable (≠ ∂S
∂W)

8/ 12 N.Thome - Deep Learning Resources

Computation on GPU

▸ Training deep ConvNets: huge speed-up with
Graphical Processing Units (GPU)1

▸ Especially convolution
1data from https://github.com/jcjohnson/cnn-benchmarks

9/ 12 N.Thome - Deep Learning Resources

https://github.com/jcjohnson/cnn-benchmarks

Computation on GPU
▸ Solution for GPU programming:

▸ CUDA (NVIDIA):
▸ C-code
▸ Higher-level APIs: cuBLAS, cuFFT, cuDNN, etc

▸ OpenCL: ∼ CUDA (not limited to NVIDIA):
generally slower

▸ Deep Learning libraries: transparent GPU
computing

10/ 12 N.Thome - Deep Learning Resources

Computation on GPU

▸ Big data: transfer from disk to memory ⇒ bottleneck
▸ Solution: use SSD instead of HDD

11/ 12 N.Thome - Deep Learning Resources

Deep Learning resources: Conclusion

▸ Very efficient implementation for computation graphs
on multi-dimensional tensors

▸ Easy to use, GPU support
▸ Do not re-invent the wheel: use them!
▸ Example with Keras
⇒ following!

12/ 12 N.Thome - Deep Learning Resources

