Neural Networks and Deep Learning:
Implementations Issues

Nicolas Thome

Conservatoire National des Arts et Métiers (Cnam)
Département Informatique

Challenges for Training Deep Learning Models

» Training of deep ConvNets: Gradient descent on loss function L:
Wt+1 =wt = UVE (Wt)

» Error-Backpropagation: way to compute VL (w?) in neural networks

» Analytical expression of the gradient straightforward: chain rule
» BUT: efficient evaluation of gradient can be very tricky

= Efficient backprop implementation far from trivial

1. Numerical Optimization Issues
2. Automatic Differentiation

1/ 10 N.Thome - Implementations Issues

Numerical Optimization Issues

» Accumulating approximations (rounding) can be problematic

v

Underflow: x ~ 0 or x = 0: different behaviors
» Division by 0 = Nan

v

Overflow: large > 0 or < 0 numbers = Nan

v

Ex: softmax on x = {x1, %0, ..., Xk }:

exi

SM(x); =

eXi

—.
LM%

v

What if x; = C Vi, and:
» C = +00?
» C > —o0?

2/ 10 N.Thome - Implementations Issues

SoftMax

)

probabilities

Numerical Optimization Issues

eXi

SM(x); =

eXi

=

Jj=1

» If x; = C Vi SM(x); = % Vi expected
» C - —o0 = e - 0: division by 0, Nan! (underflow)
» C —» 400 = e® - +oo: Nan! (overflow)

» Numerical stabilization for denominator:

z =x - max;(x;) = SM(z) = SM(x)

» max;(e?) =1 = no overflow
» max;(e%) =1 = no underflow

3/ 10 N.Thome - Implementations Issues

SoftMax

probabilities

Numerical Optimization Issues

SoftMax

—~ : probabilities
, Cor—rsra A
» SM(x); = ge:x,-' z =x - max;(x;) = SM(z) = SM(x) O— - [
@— o

» What if we compute log [SM(z)], eg cross-entrpoy loss? :
» SM(z) can be 0 (underflow) = log [SM(z)] — —oco: Nan! I~

K
» Solution: stabilize log [SM(x);] = x; — /oglz eXf‘]
j=1
» Same solution: z = x — max;(x;)
= log [SM(z);] = log [SM(x);]?

= Underflow, overflow?

4/ 10 N.Thome - Implementations Issues

Computing Derivatives

» Numerical approximation: f’(x) ~ M ?

» © Approximate, numerical issues (underflow/overflow)

» Symbolic differentiation?
» © Rapidly: huge expressions, many duplicated terms = lack of efficiency

f(x) F'(x) f'(x)
6da(1—r)(1-2r)* 128x(1 —x)(—8 + 16x)(1 — 22)%(1 — 64(1 — 42r + 5042® — 2640x° +
(1 — 8r + 82%)* Br+82%)+64(1—2)(1-22)*(1—-8z+ T040x* — 9984x° + T168x° — 204827)

8770 —Gdx(1 —25)%(1 — Rz +822)° —
25fiz(1 — 2)(1 — 2r)(1 — 8z + 8x2)?

» Automatic differentiation
» Interleave symbolic differentiation and simplification steps
» Symbolic differentiation at the elementary operation level
keep intermediate numerical results

5/ 10 N.Thome - Implementations Issues

Automatic Differentiation (AD)

» Computation graph: core abstraction for computing gradient with backprop
» Ex?: f(x,y,z)=(x+y)*z

of of of

Ox' dy' 0z

» x=-2,y=5, z=-4, forward prop = g =3, f =12

» Ultimate goal: compute numerical values

X 2
g 3

y 5

?From Stanford course: http://cs231n.github.io/optimization-2/

6/ 10 N.Thome - Implementations Issues

http://cs231n.github.io/optimization-2/

Computation Graph & backprop

» 9 =1 backprop=>_v o
N f:q*23%222_41 %:q:3,back—pr0p:>%, g;

>q=x+yz% g—?=—4*1——4 g; ggg; —4x1=-4

7/ 10 N.Thome - Implementations Issues

Computation Graph (CG) & backprop

» Automatic differentiation with CG: Forward + backward pass

» Backward pass: recursively compute derivatives from top — bottom
» Dynamic programming, big speed-up wrt naive forward-mode differentiation
» ex: Forward forward-mode differentiation from x: % =1, % =1, % =-4

= N nodes: N forward passes vs 1 forward 4+ 1 backward for backprop

8/ 10 N.Thome - Implementations Issues

Computation Graph (CG) & backprop

» Symbolic differentiation only at atomic operation level, e.g. binary arithmetic
operators?, exp, log, trigonometric functions

» Include block with known derivative which is well numerically behaved
» Ex: sigmoid o(x) = 1=, o/(x) = o(x) [1 - o(x)]

l+e~?

x=10= 0(x)=0.73, 0/(x) =0.2

1.00 100 ‘ 1.37 7
R a T O D R

multiplication, addition, subtraction, division, etc

9/ 10 N.Thome - Implementations Issues

Implementation Issues: Conclusion

» Efficient Implementation of back-prop in deep learning: very tricky!
Computing efficient & robust derivatives?

» AD: combines atomic symbolic differentiation with recursive back-propagation of
numerical gradients

» Software / libraries implementing these concepts?
= following!

+F
o> E:NO:['K 'l!\ theano
caﬁez TensorFlow

{:3" : dmic .
Chainer PYTORCH mxnet K

10/ 10 N.Thome - Implementations Issues

