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Deep Learning Era
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» Deep Learning: huge impact
in terms of experimental
results



Understanding Deep Learning
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» BUT: formal understanding still limited
> Optimization: non-convex problem
» Model: ability to untangle manifold
» Robustness to over-fitting & generalization
» Stability, uncertanety estimate
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Non-Convex Optimization

» One of the main historical shortcoming of deep neural networks
» In pratice, not really an issue with modern neural networks, WHY?

» Some preliminary answer elements:
> In high dimensional space random functions tend to have few local
minima but many saddle points [Dauphin et al., 2014]
» Empirically, gradient descent methods manage to
escape [Goodfellow and Vinyals, 2015] saddle points
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Non-Convex Optimization

» WHY non-convex optimization ist not a major practical issue for deep learning?
» Some preliminary answer elements:

» Most of local minima have about the same objective
value [Haeffele and Vidal, 2015, Choromanska et al., 2014]

(Cartoon of
Dauphin et al 2014’s
worldview)
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Deep Learning and Generalization

» Rademacher complexity: capacity of a model to fit random label :
1 n
R,,(H) = Eg supheHE Z(f,‘h(X,‘)
i=1

» Rethinking generalization [Zhang et al., 2017], ICLR
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» Deep models easily fits random labels !!
» Rn(H) » 1 = no theoretical guarantee on generalization performances

» Classical learning theory insufficient to explain the good generalization
behavior of deep models
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Deep Learning (DL) & Stability

» Deep Models not necessarily robust to input variations
» Deep Models do not naturally capture uncertainty

» Ex: Adversarial Examples

correct +distort ostrich correct +distort ostrich
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Deep Learning (DL) & Uncertainty: Problem

Softmax output in deep neural network # confidence (uncertainty) measure!
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Input Feature extraction + Classification Output

» Often wrong prediction < unjustified high confidence
» Uncertainty however crucial in major applicative domains:

» Healthcare
> Autonomous driving
» Nuclear
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Deep Learning Theory
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Formal theory explaining deep learning success: infancy

Optimization: preliminary results for non-convex
functions [Dauphin et al., 2014, Choromanska et al., 2014,
Goodfellow and Vinyals, 2015, Haeffele and Vidal, 2015]

Regularization: to be established

Stability: studies under signal processing
perspective [Bruna and Mallat, 2013], kernel
methods [Bietti and Mairal, 2017]

Uncertainty: preliminary connections between
Bayesian models and dropout [Gal and Ghahramani, 2016]

TO BE CONTINUED ...
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