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Unsupervised Learning

▸ Standard criterion for unsupervised training: reconstruction error,
e.g. Mean Squared Error (MSE), Maximum likelihood etc

▸ Ex: Auto-encoders: z = f (Wx), x̃ = g(Wtx)
▸ Auto-encoder objective function: C =

N
∑

i=1
∣∣xi − x̃∣∣2
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Unsupervised Learning

▸ Success of deep learning essentially for supervised tasks,
e.g. classification

▸ Unsupervised deep learning no comparable breakthrough, WHY?
⇒ Classification: clear objective (discrimination) vs
⇒ Reconstruction: questionable

▸ Fitting data well: what if ultimate goal is classification, generalization
to a set of examples ?

▸ Reconstruction is not required, or even not a good idea
▸ Deeper representation ⇔ more abstract representations ⇔

generalization ⇔ loss of information

▸ Two current alternatives to unsupervised learning:
1. Objective without reconstruction
2. Casting unsupervised training as classification
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Beyond Reconstruction: Ladder Networks [Rasmus et al., 2015]

▸ "An autoencoder which can discard information"
▸ Layer above does not reconstruct layer below only with its activation
▸ Solution: Provide the details to learn only the abstract features

▸ Decoder has a noisy version of the input to reconstruct
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Auto-Supervision & Predictive Learning

▸ Transformed unsupervised problem to a supervised one
▸ Automatically creating labels, exploiting "neighborhood", e.g.

▸ Spatial
▸ Temporal
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Word2Vec [Mikolov et al., 2013]

▸ Embedding of words, i.e. assign each one-hot word ∈ RV a vector ∈ RN

▸ Word2Vec principle: predict a word given its context
▸ Assumption: similar words appears in similar contexts
▸ Input: Bag of Words of context
▸ Project to a given space, apply soft max to classify the central word
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Context-Encoders [Pathak et al., 2016]: Word2Vec for Images
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Generative Adversarial Networks (GAN) [Goodfellow et al., 2014]

▸ Other trendy auto-supervised method: Generative Adversarial
Networks (GAN) [Goodfellow et al., 2014]
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Generative Adversarial Networks (GAN) [Goodfellow et al., 2014]

▸ Unsupervised problem ⇒ 2-player game theory problem
▸ Interesting results: optimal generator learns data distribution
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Unsupervised Learning: Conclusion
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