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Deep Learning Era

▸ Deep Learning: huge impact
in terms of experimental
results
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Understanding Deep Learning

▸ BUT: formal understanding still limited
▸ Optimization: non-convex problem
▸ Model: ability to untangle manifold
▸ Robustness to over-fitting & generalization
▸ Stability, uncertanety estimate
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Non-Convex Optimization

▸ One of the main historical shortcoming of deep neural networks
▸ In pratice, not really an issue with modern neural networks, WHY?
▸ Some preliminary answer elements:

▸ In high dimensional space random functions tend to have few local
minima but many saddle points [Dauphin et al., 2014]

▸ Empirically, gradient descent methods manage to
escape [Goodfellow and Vinyals, 2015] saddle points
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Non-Convex Optimization

▸ WHY non-convex optimization ist not a major practical issue for deep learning?
▸ Some preliminary answer elements:

▸ Most of local minima have about the same objective
value [Haeffele and Vidal, 2015, Choromanska et al., 2014]
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Deep Learning and Generalization

▸ Rademacher complexity: capacity of a model to fit random label :

Rn(H) = Eσ [suph∈H
1
n

n

∑
i=1

σih(xi)]

▸ Rethinking generalization [Zhang et al., 2017], ICLR

▸ Deep models easily fits random labels !!
▸ Rn(H) ≈ 1 ⇒ no theoretical guarantee on generalization performances

▸ Classical learning theory insufficient to explain the good generalization
behavior of deep models

5/ 8 Deep Learning Theory



Deep Learning (DL) & Stability

▸ Deep Models not necessarily robust to input variations
▸ Deep Models do not naturally capture uncertainty
▸ Ex: Adversarial Examples
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Deep Learning (DL) & Uncertainty: Problem

Softmax output in deep neural network ≠ confidence (uncertainty) measure!

▸ Often wrong prediction ↔ unjustified high confidence
▸ Uncertainty however crucial in major applicative domains:

▸ Healthcare
▸ Autonomous driving
▸ Nuclear
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Deep Learning Theory

Formal theory explaining deep learning success: infancy

▸ Optimization: preliminary results for non-convex
functions [Dauphin et al., 2014, Choromanska et al., 2014,
Goodfellow and Vinyals, 2015, Haeffele and Vidal, 2015]

▸ Regularization: to be established
▸ Stability: studies under signal processing
perspective [Bruna and Mallat, 2013], kernel
methods [Bietti and Mairal, 2017]

▸ Uncertainty: preliminary connections between
Bayesian models and dropout [Gal and Ghahramani, 2016]

TO BE CONTINUED ...
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