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Training Deep ConvNets on Small Datasets

» Ex: PASCAL VOC'07: 20 categories, 5000 training samples
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» Training Deep model from scratch
(VGG) vs Hancrafted BoW
(FV) [Perronnin et al., 2010]

» Deep « Handcrafted
Model  Test mAP (%)

VGG ~ 40
FV ~ 70




Training Deep ConvNets on Small Datasets

» ImageNet:
deep » hancrafted
» VOC'07
deep « hancrafted
> Not enough training
samples
» Complex images
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Transfer Learning

» Idea: export knowledge from source domain to target domain
» Source: good performances, e.g. many samples

» Target: more challenging, e.g. few samples

= Deep ConvNet good in imagenet, but not as good in VOC'07
» Assumption: source and target classes different but related
» Learned representations in ImageNet (source) relevant for VOC'07

(target)
» Ex: Various breeds of cat (tabby, persian) vs cat
ImageNet VOC'07
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Transferring Representations learned from ImageNet

» Most naive transfer learning approach:
» Load ConvNet model pre-trained on ImageNet, e.g. VGG
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Transferring Representations learned from ImageNet

» Most naive transfer learning approach:
» Load ConvNet model pre-trained on ImageNet
» Apply ConvNet on each target dataset image, e.g. VOC
» Extract a given layer activation: "Deep Features" (DF)
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Deep Features (DF) for Classification
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» Deep Feature (DF), e.g. fc7: use it as any visual descriptor

» Fc7 (4096 before classif): relevant features for discriminating
classes related to target class, e.g. tabby/persian cat for cat
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Deep Features (DF) for Classification

Target class probability
. p@irplaneficry > Deep Feature (DF), e.g. fc7: use it
as any visual descriptor
» DF: very non-linear feature extractor
» Can use any Machine Leanring flat

p(bottle/fc7) ..
model for target class prediction

p(cow/fc7)

p(people/fc7)

4096

Deep Feature ] .
p(TV_monitor/fc7)
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Deep Features (DF) for Classification

Which layer to use for classification ?

[

i

] . » Layers close to classification: specific to ImageNet

i » Layers less close to classification: more generic features

. = Dependent on semantic similarity between target task & ImageNet
N
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Deep Features (DF) for localized visual tasks

Person

» Localized visual tasks: localization, segmentation, retrieval
» Use DF to describe image region content

o/ 11 Deep Features



Deep Features (DF) for Visual Recognition

» Deep Features: ConvNet success beyond ImageNet
= No need huge dataset for using / training deep models
» Off-the-shelf features for any visual recognition task

Increasing distance from ImageNet
e

Image Classification Attribute Detection  Fine-grained Recognition
PASCAL VOC Object [9]  H3D human attributes [6] ~ Cat&Dog breeds [29] VOC Human Action [9]  Holiday scenes [17]
MIT 67 Indoor Scenes [33] ~ Object attributes [10] Bird subordinate [43] Stanford 40 Actions [16]  Paris buildings [31]
SUN 397 Scene [15] SUN scene attributes [30] 102 Flowers [27] Visual Phrases [31] Sculptures [1]
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Credit: Razavian et. al. [Azizpour et al., 2016]
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Deep Features (DF) for Visual Recognition: Conclusion

» Off-the-shelf features for any visual recognition task
» ImageNet: 1000 classes, large set of visual concepts
» Transfer very well even to task with large domain shift, e.g. medical,
images
» How implement transfer for classification & localized tasks?
= following!
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