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INVERSE PROBLEMS

• Follow a cause-effect explanation
• What is the cause given an observed 

effect?
• What are the parameters?

• Problems without a unique solution
• Hadamard: Ill-posed/Ill-conditioned
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DEEP NEURAL NETWORKS



XCEPTION CNN
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INFOCUS TRAINING

Phase 
patterns
on SLM

Captured 
images

Given Zernike 
coefficients

Number of training images:100,000 and 1,000,000
Number of Zernike coefficient: 31
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INFOCUS RESULTS:100,000

RMSE(number of test images:1000)
train：0.160
test：0.177

Zernike coefficient(red：true, orange：estimated)
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INFOCUS RESULTS:1,000,000

RMSE(number of test images:1000)
train：0.151
test：0.154

Zernike coefficient(red：true, orange：estimated)
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SCATTERING

White led point 
light source

Lens
f:10 cm

Lens
f:8 cm

SLM
camera

8 cm10 cm

polarizer Scattering 
plate



SCATTERING TRAINING

Phase
patterns
on SLM

Captured 
images

Given zernike
coefficients

Number of training images:100,000 and 1,000,000
Number of Zernike coefficients: 31
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SCATTERING RESULTS:100,000

RMSE(number of test images:1000)
train：0.079
test：0.103

Zernike coefficient(red：true, orange：estimated)
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SCATTERING RESULTS:1,000,000

RMSE(number of test images:1000)
train：0.077
test：0.079

Zernike coefficient(red：true, blue：estimated)
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DEFOCUS

White led point 
light source

Lens
f:10 cm

Lens
f:8 cm

SLM
camera

8 cm＋δ10 cm

polarizer



DEFOCUS TRAINING

Phase 
patterns
on SLM

Captured 
images

Given Zernike 
coefficients

Number of training images:100,000 and 1,000,000
Number of Zernike coefficient: 31
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DEFOCUS RESULTS:100,000

RMSE(number of test images:1,000)
train：0.068
test：0.086

Zernike coefficient(red：true, orange：estimated)

-0.5

0

0.5

1 4 7 10 13 16 19 22 25 28 31

-0.5

0

0.5

1 4 7 10 13 16 19 22 25 28 31

-0.5

0

0.5

1 4 7 10 13 16 19 22 25 28 31



DEFOCUS RESULTS:1,000,000

RMSE(number of test images:1,000)
train：0.062
test：0.065

Zernike coefficient(red：true, orange：estimated)
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EXTENDED OBJECTS

INFOCUS

DEFOCUS

SCATTER



SUMMARIZED RESULTS

In-focus Overexposure Defocus Scatter

Point source 0.142 ± 0.032 0.036 ± 0.013 0.040 ± 0.016 0.057 ± 0.018

Extended 
sources

0.288 ± 0.024 0.214 ± 0.051 0.099 ± 0.064 0.195 ± 0.064



SUMMARIZED RESULTS







DLWFS IN ACTION
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FASTER TRAINING?

ARE THERE SIMPLER CONVOLUTIONAL 
NEURAL NETWORKS? 
3DNET

HOW MANY PIXELS WE ACTUALLY NEED?
RELATED TO NUMBER OF ZERNIKE MODES?



DWLFS WITH 3DNET: 50.000 
TRAINING SAMPLES



DWLFS WITH 3DNET: 50.000 
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DWLFS WITH 3DNET: 50.000 
TRAINING SAMPLES



CONCLUSIONS
• Wavefront sensing can be seen as the retrieval of a phase 

fluctuation from an intensity measurement

• As an inverse problem, it can be solved by mathematical 
modeling or machine learning (black box modeling)

• Deep neural networks are novel modeling tools for a variety 
of tasks such as detection, classification and regression, 
requiring an intensive training stage

• We can use deep learning to train a model that is able to 
estimate Zernike modes out from intensity measurements, 
which gives flexibility to the optical system design

• We demonstrate that deep learning can become useful for 
image-based WFS, while simple optical transformations such 
as defocus can dramatically boost the performance

• The DLWFS can even be train to estimate wavefront
disturbances even if the incoming light came from extended 
objects 



FURTHER WORK

• SPEED or ACCURACY?

• Explore novel neural network architectures that may 
alleviate training time without sacrificing accuracy

• Understand the balance of sampling pixels and phase 
resolution, or number of Zernike modes

• Use pretrained neural networks using simulations, then 
update weights based in just a few as-built training samples

• Explore what could be the best optical transformation or 
plane where to make the most informative measurements

• Close the loop



OPTOLAB TEAM



optolab.pucv.cl

OPTOELECTRONICS LAB



OPTOELECTRONICS LAB
VISION

Research and Development of 
Computational Imaging Systems

Design of disruptive, non-traditional imaging 
systems to efficiently capture the maximum 
amount of optical information



Center for Adaptive Optics of VAlparaíso
(CAOVA) – ANID QUIMAL

XCATCAM

EXtreme Compressive All-sky Tracking CAMera
(XCATCAM) – AFOSR
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