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The search for life on extrasolar planets
• More than 4000 exoplanets have been discovered

since 1992 (∼2300 by Kepler)
I Mostly via transit timing, radial velocities (indirect)
I Limited spectral information via transit spectroscopy

• Direct imaging enables full spectroscopic analysis in
search for indicators of life (c.f. H2O, CO2)

Source: https://asd.gsfc.nasa.gov/luvoir/

Source: Macintosh et al.,
Science 350(6256), 64–67 (2015)
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Direct imaging of exoplanets: coronagraphy

• Goal: suppress light from bright on-axis star, transmit
signal from faint off-axis planet inside dark zone
• Key metrics:

I Flux ratio:
Total flux from planet entering telescope
Total flux from star entering telescope

Hot Jupiter-like planet in NIR: 10−6

Earth-like planet in visible: . 10−10

I Contrast:
Intensity at (θx, θy) from star with coronagraph
Peak intensity from star without coronagraph

• Angular separation for rocky planets around nearby stars
∼ 0.1 arcsec
• Requires high-precision optical instrumentation + active

wavefront sensing/control using deformable mirrors (DMs)
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Lyot coronagraphy

Focal-plane mask Lyot stop DetectorEntrance pupil

DM1 DM2

• Focal-plane mask (FPM) blocks core of on-axis stellar PSF, transmits off-axis
planetary PSF
• Lyot stop suppresses sidelobes of on-axis stellar PSF
• Deformable mirrors (DM1/DM2) compensate for amplitude and phase aberrations
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Apodized pupil Lyot coronagraph (APLC)

Apodizer Focal-plane mask Lyot stop DetectorEntrance pupil

DM1 DM2

• Apodizer suppresses unwanted diffraction from pupil features (segment gaps, struts)
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Planet detection: no wavefront error

Wavefront error
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Planet detection: 50 pm RMS per-segment piston/tip/tilt

Wavefront error
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Wavefront sensing and control

Total E-field at detector

Aberrated E-field E-field from DMs

Iteration index DM actuator commands

• Closed-loop wavefront sensing and control
iteratively minimizes starlight in dark zone
• Two deformable mirrors (one in-pupil and one

out-of-pupil) correct amplitude and phase
aberrations over symmetric dark zone

Control Estimation
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Model-based wavefront control
• Goal: choose DM commands ak to drive ED,k to zero as k →∞
• Use numerical model to predict EDM,k(ak), solve inverse problem for ak

• Two common inverse problems:

1 Stroke minimization (SM)1:

argmin
ak

aT
k ak subject to

Integrated dark-zone intensity︷ ︸︸ ︷
E†D,kED,k ≤ IT,k︸︷︷︸

Target

(1)

2 Electric field conjugation (EFC)2,3:

argmin
ak

(
ED,k −ET,k

)†(
ED,k −ET,k

)
+ akΓTΓak (2)

1L. Pueyo et al., Appl. Opt. 48, 6296–6312 (2009)
2A. Give’on et al., Proc. SPIE 7440, 74400D (2009)
3SM and EFC are equivalent when ET,k = 0 and Γ = αI
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Stroke minimization

• Method of Lagrange multipliers: find critical point of Lagrangian function

Lk , aT
k ak + µ(E†D,kED,k − IT,k) (3)

• Conventional approach:

1 Use numerical model to evaluate Gk ,
∂ED,k

∂ak
. Then

a∗k(µ) = −
[
1

µ
+ <

{
G†kGk

}]−1
<
{

G†kÊab,k

}
(4)

2 Generate family of solutions with different µ
3 Choose smallest µ such that E†D,kED,k ≤ IT,k

4

4Reminder: ED,k ≈ Eab,k + EDM,k(ak)
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Stroke minimization

a∗k(µ) = −
[
1

µ
+ <

{
G†kGk

}]−1
<
{

G†kÊab,k

}
(5)

• Problem: have to calculate matrix-valued derivative Gk ∈ CNpix×Nact

I Computationally expensive
I Usually just compute G0 before start of experiment and reuse for all iterations→ reduces

speed of convergence to high contrast
I For multi-wavelength control, need to compute separate G matrix for each controlled

wavelength

• Can we do better?
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The solution: reverse-mode algorithmic differentiation (RMAD)6

• Efficient, analytical differentiation of numerical algorithms
• Main idea: given forward model consisting of sequence of N differentiable operations
xn = fn(xn−1) with xN scalar, construct adjoint model that evaluates ∂xN/∂xn , xn

• Gradient propagation rule:

if xn = fn(xn−1) (6)

then xn−1 =

(
∂fn
∂xn−1

∣∣∣∣
xn−1

)†
︸ ︷︷ ︸

Adjoint of Jacobian matrix of fn , evaluated at xn−1

xn (7)

• Cost of evaluating gradient ∼ cost of evaluating forward model (cheap gradient
principle5)

5A. S. Jurling and J. R. Fienup, J. Opt. Soc. Am. A 31(7), 1348–59 (2014)
6Also known as backpropagation algorithm in machine learning with neural networks
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Reverse-mode algorithmic differentiation

• Example (phase retrieval): retrieve Zernike coefficients a that best explain data D

Forward model Adjoint model

φ = Za

ψ = exp

{
i
2π

λ
φ

}
M = FFT{ψ}

I = |M|2

E = ‖I−D‖2

I = 2(I−D)

M = 2M ◦ I

ψ = IFFT
{

M
}

φ =
2π

λ
=
{
ψ ◦ψ∗

}
a = ZT φ

1 Given value of a, evaluate variables in forward model (φ, ψ, M, I, E)
2 Insert into adjoint model and evaluate adjoint variables (I, M, ψ, φ, a)
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Proposed algorithm7

• Stroke minimization, but with quadratic contrast penalty instead of linear:

Jk = aT
k ak + µ

(
E†D,kED,k − IT,k

)2
(8)

I Quadratic penalty: enforces contrast target without line search on µ

• Use gradient-based nonlinear optimization with RMAD gradient ak to minimize Jk in
each control iteration
• Advantages:

I Don’t need to calculate Gk at all→
{

Massive reduction in up-front computation
Easier to update model between iterations

I Only vector-valued derivatives handled during gradient computation→ better scaling
with actuator count, dark zone size

7S. D. Will, T. D. Groff, and J. R. Fienup, JATIS (2020, under review)
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Simulations: overview

• Compared proposed gradient-based method to Jacobian-based algorithm
• Small-angle APLC design8 submitted to 2020 Astrophysics Decadal Survey for

proposed LUVOIR mission9

• Three different MEMS DM formats: 50× 50, 64× 64, 128× 128

Entrance pupil Apodizer

3.5 0/D

Focal-plane mask Lyot stop

3.4 0/D
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Stellar image
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8Courtesy of R. Soummer
9https://asd.gsfc.nasa.gov/luvoir/
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Simulation results
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Contrast vs. iteration
grad, 128× 128

grad, 64× 64

grad, 50× 50

jac, 128× 128

jac, 64× 64

jac, 50× 50

• Both algorithms converge as
expected after 25 iterations
• Jacobian-based algorithm

overshoots slightly in optimistic
direction due to Lagrange
multiplier line search
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Simulation results
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Runtime vs. iteration
grad, 128× 128

grad, 64× 64

grad, 50× 50

jac, 128× 128

jac, 64× 64

jac, 50× 50

• Jacobian-based algorithm
faster for lowest actuator
counts, but very slow for
128× 128 case
• Proposed algorithm runtime

invariant to actuator count
• Results shown do not factor in

time cost of precomputing G0

scott.will@rochester.edu NLO for coronagraphic wavefront control 09/24/20 17 / 19



Simulation results
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Memory usage vs. actuator count
grad, median
grad, max
jac, median
jac, max

• Memory consumption of
proposed algorithm invariant to
actuator count
• At 128× 128 actuators per DM

(baseline for LUVOIR mission),
Jacobian-based algorithm
consumes 10×more memory
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Future work

• Laboratory demonstrations
• Dynamically updated model: use data from low-order wavefront sensor (LOWFS) in

each control iteration to capture time-varying aberrations
• Adaptive control:

I Compute gradients with respect to model parameters (DM influence function, pupil shear,
pupil transmittance, etc.) and use control history to tune model

I Alternate between contrast improvement and model improvement
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