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The search for life on extrasolar planets

e More than 4000 exoplanets have been discovered
since 1992 (~2300 by Kepler)

: e . e GPl/H-band
» Mostly via transit timing, radial velocities (indirect) /
» Limited spectral information via transit spectroscopy

e Direct imaging enables full spectroscopic analysis in
search for indicators of life (c.f. H,0, CO5,)
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Direct imaging of exoplanets: coronagraphy

e Goal: suppress light from bright on-axis star, transmit 107!
signal from faint off-axis planet inside dark zone

e Key metrics:
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Intensity at (6., 6,) from star with coronagraph

» Contrast . - -
Peak intensity from star without coronagraph

e Angular separation for rocky planets around nearby stars
~ 0.1 arcsec

e Requires high-precision optical instrumentation + active
wavefront sensing/control using deformable mirrors (DMs)
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Lyot coronagraphy

DM1 DM2
Entrance pupil Focal-plane mask Lyot stop Detector

¢ Focal-plane mask (FPM) blocks core of on-axis stellar PSF, transmits off-axis
planetary PSF

e Lyot stop suppresses sidelobes of on-axis stellar PSF
¢ Deformable mirrors (DM1/DM2) compensate for amplitude and phase aberrations
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Apodized pupil Lyot coronagraph (APLC)

DM1 DM2

Detector

Entrance pupil

e Apodizer suppresses unwanted diffraction from pupil features (segment gaps, struts)
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Planet detection: no wavefront error

Wavefront error
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Planet detection: 50 pm RMS per-segment piston/tip/tilt

Wavefront error
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Wavefront sensing and control

Aberrated E-field _l i_ E-field from DMs
Ep i ~ Eap r + Epwmix(ag)
Total E-field at detector—T [teration index DM actuator commands
ag

¢ Closed-loop wavefront sensing and control
iteratively minimizes starlight in dark zone

¢ Two deformable mirrors (one in-pupil and one

out-of-pupil) correct amplitude and phase
aberrations over symmetric dark zone

ab,k
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Model-based wavefront control

e Goal: choose DM commands ay, to drive Ep 4, to zero as k — oo

® Use numerical model to predict Epyp x(ax), Solve inverse problem for ay,
e Two common inverse problems:

Stroke minimization (SM)":

Integrated dark-zone intensity
——

arg min a{ak subject to EE cEpk < It
ay ’ ~—~
Target

Electric field conjugation (EFC)%>:

argmin (ED,k — ]‘::T)k)Jr(]'EDJc — Eka) + akI‘TI‘ak

ag

TL. Pueyo et al.,, Appl. Opt. 48, 6296-6312 (2009)
2A. Giveon et al., Proc. SPIE 7440, 74400D (2009)
¥SM and EFC are equivalent when Ez, = 0 and T’ = ol
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Stroke minimization

e Method of Lagrange multipliers: find critical point of Lagrangian function
Ly = afa + p(E}, Ep s — Iry) (3)
e Conventional approach:

. OE
Use numerical model to evaluate G, £ a—D’k. Then
aj

ay(u) =— [% + %{GLGIC}] _1%{G2Eab,k} 4)

Generate family of solutions with different u
Choose smallest x such that EE,kED,k < Ippt

4Reminder: ED,k ~ Eab,k + EDM,k(ak)
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Stroke minimization

af () = — [i T %{Gzek}] (Gl Ba) (5)

¢ Problem: have to calculate matrix-valued derivative G, € CNVpix* Nact

» Computationally expensive

» Usually just compute G before start of experiment and reuse for all iterations — reduces
speed of convergence to high contrast

» For multi-wavelength control, need to compute separate G matrix for each controlled
wavelength

e Can we do better?
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The solution: reverse-mode algorithmic differentiation (RMAD)®

e Efficient, analytical differentiation of numerical algorithms

¢ Main idea: given forward model consisting of sequence of N differentiable operations
T, = fn(z,_1) with zx scalar, construct adjoint model that evaluates 9z /0z, = 7,

¢ Gradient propagation rule:

T
then 7, 1= ( Ofn > Ty (7)

Adjoint of Jacobian matrix of f,,, evaluated at z,,—1

e Cost of evaluating gradient ~ cost of evaluating forward model (cheap gradient
principle®)

°A. S. Jurling and J. R. Fienup, J. Opt. Soc. Am. A 31(7), 1348-59 (2014)
®Also known as backpropagation algorithm in machine learning with neural networks
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Reverse-mode algorithmic differentiation

e Example (phase retrieval): retrieve Zernike coefficients a that best explain data D

Forward model Adjoint model

¢ =Za

o exp{i%ﬂqf)} iz 2M oi_
. IFFT{M}
M = FFT{4}

_ 9 _
1= |MP 6=T5{vov}
E=|L-D|? @

Given value of a, evaluate variables in forward model (¢, ¥, M, 1, E)
Insert into adjoint model and evaluate adjoint variables (I, M, 1, ¢, a)
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Proposed algorithm’

e Stroke minimization, but with quadratic contrast penalty instead of linear:

2
Ji = azak + M(ETD7kED,k — IT,k> (8)
» Quadratic penalty: enforces contrast target without line search on

¢ Use gradient-based nonlinear optimization with RMAD gradient a;, to minimize Ji in
each control iteration

e Advantages:
Massive reduction in up-front computation

» Don't need to calculate Gy, at all — _ ) .
Easier to update model between iterations

» Only vector-valued derivatives handled during gradient computation — better scaling
with actuator count, dark zone size

’S.D. Will, T. D. Groff, and J. R. Fienup, JATIS (2020, under review)
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Simulations: overview

e Compared proposed gradient-based method to Jacobian-based algorithm

¢ Small-angle APLC design® submitted to 2020 Astrophysics Decadal Survey for
proposed LUVOIR mission®

e Three different MEMS DM formats: 50 x 50, 64 x 64, 128 x 128

Entrance pupil Focal-plane mask Lyot sto

'3.5 Ao/D

Stellar image

8Courtesy of R. Soummer
°https://asd.gsfc.nasa.gov/Iuvoir/
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Simulation results

Contrast vs. iteration
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£ e Both algorithms converge as
o 1085 expected after 25 iterations
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c _ direction due to Lagrange
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Simulation results

Runtime vs. iteration

12000
—e— grad, 128 x 128

100001 —e— grad, 64 x 64
—o— grad, 50 x 50
80001 —e— jac, 128 x 128

e Jacobian-based algorithm
faster for lowest actuator

o _ counts, but very slow for
£ eo0p] o dac G4x 64 128 x 128 case
;5 fac, 50 x50 e Proposed algorithm runtime
40001 invariant to actuator count
2000 1 e Results shown do not factor in
time cost of precomputing G
0-
0 5 10 15 20 25
Iteration

scott.will@rochester.edu NLO for coronagraphic wavefront control 09/24/20 17/19



Simulation results
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Memory usage vs. actuator count
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e Memory consumption of
proposed algorithm invariant to
actuator count

e At 128 x 128 actuators per DM
(baseline for LUVOIR mission),
Jacobian-based algorithm
consumes 10x more memory

64 128

Actuators per side
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Future work

e | aboratory demonstrations

¢ Dynamically updated model: use data from low-order wavefront sensor (LOWFS) in
each control iteration to capture time-varying aberrations

¢ Adaptive control:

» Compute gradients with respect to model parameters (DM influence function, pupil shear,
pupil transmittance, etc.) and use control history to tune model
» Alternate between contrast improvement and model improvement
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