Efficient model-based wavefront control for coronagraphy using nonlinear optimization

Scott D. Will ${ }^{1,2,3}$ Tyler D. Groff ${ }^{3}$ James R. Fienup ${ }^{1}$
${ }^{1}$ The Institute of Optics, University of Rochester
${ }^{2}$ Space Telescope Science Institute
${ }^{3}$ NASA Goddard Space Flight Center
09/24/20

The search for life on extrasolar planets

- More than 4000 exoplanets have been discovered since 1992 (~2300 by Kepler)
- Mostly via transit timing, radial velocities (indirect)
- Limited spectral information via transit spectroscopy
- Direct imaging enables full spectroscopic analysis in search for indicators of life (c.f. $\mathrm{H}_{2} \mathrm{O}, \mathrm{CO}_{2}$)

Source: Macintosh et al., Science 350(6256), 64-67 (2015)

Source: https://asd.gsfc.nasa.gov/luvoir/

Direct imaging of exoplanets: coronagraphy

- Goal: suppress light from bright on-axis star, transmit signal from faint off-axis planet inside dark zone
- Key metrics:
- Flux ratio: $\frac{\text { Total flux from planet entering telescope }}{\text { Total flux from star entering telescope }}$

- Angular separation for rocky planets around nearby stars ~ 0.1 arcsec
- Requires high-precision optical instrumentation + active wavefront sensing/control using deformable mirrors (DMs)

Lyot coronagraphy

- Focal-plane mask (FPM) blocks core of on-axis stellar PSF, transmits off-axis planetary PSF
- Lyot stop suppresses sidelobes of on-axis stellar PSF
- Deformable mirrors (DM1/DM2) compensate for amplitude and phase aberrations

Apodized pupil Lyot coronagraph (APLC)

DM1 DM2

Entrance pupil

- Apodizer suppresses unwanted diffraction from pupil features (segment gaps, struts)

Planet detection: no wavefront error

Planet detection: 50 pm RMS per-segment piston/tip/tilt

Wavefront error

Wavefront sensing and control

- Closed-loop wavefront sensing and control iteratively minimizes starlight in dark zone
- Two deformable mirrors (one in-pupil and one out-of-pupil) correct amplitude and phase aberrations over symmetric dark zone

Model-based wavefront control

- Goal: choose DM commands \mathbf{a}_{k} to drive $\mathbf{E}_{D, k}$ to zero as $k \rightarrow \infty$
- Use numerical model to predict $\mathbf{E}_{\mathrm{DM}, k}\left(\mathbf{a}_{k}\right)$, solve inverse problem for \mathbf{a}_{k}
- Two common inverse problems:

1 Stroke minimization (SM) ${ }^{1}$:
Integrated dark-zone intensity

$$
\begin{equation*}
\underset{\mathbf{a}_{k}}{\arg \min } \quad \mathbf{a}_{k}^{T} \mathbf{a}_{k} \quad \text { subject to } \quad \overbrace{\mathbf{E}_{D, k}^{\dagger} \mathbf{E}_{D, k}} \leq \underbrace{I_{T, k}}_{\text {Target }} \tag{1}
\end{equation*}
$$

2 Electric field conjugation (EFC) ${ }^{2,3}$:

$$
\begin{equation*}
\arg \min \quad\left(\mathbf{E}_{D, k}-\mathbf{E}_{T, k}\right)^{\dagger}\left(\mathbf{E}_{D, k}-\mathbf{E}_{T, k}\right)+\mathbf{a}_{k} \boldsymbol{\Gamma}^{T} \boldsymbol{\Gamma} \mathbf{a}_{k} \tag{2}
\end{equation*}
$$

[^0]
Stroke minimization

- Method of Lagrange multipliers: find critical point of Lagrangian function

$$
\begin{equation*}
\mathcal{L}_{k} \triangleq \mathbf{a}_{k}^{T} \mathbf{a}_{k}+\mu\left(\mathbf{E}_{D, k}^{\dagger} \mathbf{E}_{D, k}-I_{T, k}\right) \tag{3}
\end{equation*}
$$

- Conventional approach:

1 Use numerical model to evaluate $\mathbf{G}_{k} \triangleq \frac{\partial \mathbf{E}_{D, k}}{\partial \mathbf{a}_{k}}$. Then

$$
\begin{equation*}
\mathbf{a}_{k}^{*}(\mu)=-\left[\frac{1}{\mu}+\Re\left\{\mathbf{G}_{k}^{\dagger} \mathbf{G}_{k}\right\}\right]^{-1} \Re\left\{\mathbf{G}_{k}^{\dagger} \widehat{\mathbf{E}}_{\mathrm{ab}, k}\right\} \tag{4}
\end{equation*}
$$

2 Generate family of solutions with different μ
3 Choose smallest μ such that $\mathbf{E}_{D, k}^{\dagger} \mathbf{E}_{D, k} \leq I_{T, k}{ }^{4}$

[^1]
Stroke minimization

$$
\begin{equation*}
\mathbf{a}_{k}^{*}(\mu)=-\left[\frac{1}{\mu}+\Re\left\{\mathbf{G}_{k}^{\dagger} \mathbf{G}_{k}\right\}\right]^{-1} \Re\left\{\mathbf{G}_{k}^{\dagger} \widehat{\mathbf{E}}_{\mathrm{ab}, k}\right\} \tag{5}
\end{equation*}
$$

- Problem: have to calculate matrix-valued derivative $\mathbf{G}_{k} \in \mathbb{C}^{N_{\text {pix }} \times N_{\text {act }}}$
- Computationally expensive
- Usually just compute \mathbf{G}_{0} before start of experiment and reuse for all iterations \rightarrow reduces speed of convergence to high contrast
- For multi-wavelength control, need to compute separate G matrix for each controlled wavelength
- Can we do better?

The solution: reverse-mode algorithmic differentiation (RMAD) ${ }^{6}$

- Efficient, analytical differentiation of numerical algorithms
- Main idea: given forward model consisting of sequence of N differentiable operations $x_{n}=f_{n}\left(x_{n-1}\right)$ with x_{N} scalar, construct adjoint model that evaluates $\partial x_{N} / \partial x_{n} \triangleq \bar{x}_{n}$
- Gradient propagation rule:

$$
\begin{align*}
\text { if } x_{n} & =f_{n}\left(x_{n-1}\right) \tag{6}\\
\text { then } \bar{x}_{n-1} & =\underbrace{\left(\left.\frac{\partial f_{n}}{\partial x_{n-1}}\right|_{x_{n-1}}\right)^{\dagger}}_{\text {Adjoint of Jacobian matrix of } f_{n}, \text { evaluated at } x_{n-1}} \bar{x}_{n} \tag{7}
\end{align*}
$$

- Cost of evaluating gradient \sim cost of evaluating forward model (cheap gradient principle ${ }^{5}$)

[^2]
Reverse-mode algorithmic differentiation

- Example (phase retrieval): retrieve Zernike coefficients a that best explain data \mathbf{D}
Forward model Adjoint model

$$
\begin{aligned}
& \phi=\mathbf{Z a} \quad \overline{\mathbf{I}}=2(\mathbf{I}-\mathbf{D}) \\
& \begin{aligned}
\boldsymbol{\psi} & =\exp \left\{i \frac{2 \pi}{\lambda} \phi\right\} & \overline{\mathbf{M}} & =2 \mathbf{M} \circ \overline{\mathbf{I}} \\
\mathbf{M} & =\operatorname{FFT}\{\boldsymbol{\psi}\} & \overline{\boldsymbol{\psi}} & =\operatorname{IFFT}\{\overline{\mathbf{M}}\}
\end{aligned} \\
& \mathbf{I}=|\mathbf{M}|^{2} \\
& E=\|\mathbf{I}-\mathbf{D}\|^{2} \quad \overline{\mathbf{a}}=\mathbf{Z}^{T} \overline{\boldsymbol{\phi}}
\end{aligned}
$$

1 Given value of a, evaluate variables in forward model $(\boldsymbol{\phi}, \boldsymbol{\psi}, \mathbf{M}, \mathbf{I}, E)$
2 Insert into adjoint model and evaluate adjoint variables ($\overline{\mathbf{I}}, \overline{\mathbf{M}}, \overline{\boldsymbol{\psi}}, \overline{\boldsymbol{\phi}}, \overline{\mathbf{a}})$

Proposed algorithm ${ }^{7}$

- Stroke minimization, but with quadratic contrast penalty instead of linear:

$$
\begin{equation*}
J_{k}=\mathbf{a}_{k}^{T} \mathbf{a}_{k}+\mu\left(\mathbf{E}_{D, k}^{\dagger} \mathbf{E}_{D, k}-I_{T, k}\right)^{2} \tag{8}
\end{equation*}
$$

- Quadratic penalty: enforces contrast target without line search on μ
- Use gradient-based nonlinear optimization with RMAD gradient $\overline{\mathbf{a}}_{k}$ to minimize J_{k} in each control iteration
- Advantages:
- Don't need to calculate \mathbf{G}_{k} at all $\rightarrow\left\{\begin{array}{l}\text { Massive reduction in up-front computation } \\ \text { Easier to update model between iterations }\end{array}\right.$
- Only vector-valued derivatives handled during gradient computation \rightarrow better scaling with actuator count, dark zone size

[^3]
Simulations: overview

- Compared proposed gradient-based method to Jacobian-based algorithm
- Small-angle APLC design ${ }^{8}$ submitted to 2020 Astrophysics Decadal Survey for proposed LUVOIR mission ${ }^{9}$
- Three different MEMS DM formats: $50 \times 50,64 \times 64,128 \times 128$

Entrance pupil

Apodizer

Focal-plane mask

Lyot stop

Stellar image

[^4]
Simulation results

- Both algorithms converge as expected after 25 iterations
- Jacobian-based algorithm overshoots slightly in optimistic direction due to Lagrange multiplier line search

Simulation results

- Jacobian-based algorithm faster for lowest actuator counts, but very slow for 128×128 case
- Proposed algorithm runtime invariant to actuator count
- Results shown do not factor in time cost of precomputing \mathbf{G}_{0}

Simulation results

Memory usage vs. actuator count

- Memory consumption of proposed algorithm invariant to actuator count
- At 128×128 actuators per DM (baseline for LUVOIR mission), Jacobian-based algorithm consumes $10 \times$ more memory

Future work

- Laboratory demonstrations
- Dynamically updated model: use data from low-order wavefront sensor (LOWFS) in each control iteration to capture time-varying aberrations
- Adaptive control:
- Compute gradients with respect to model parameters (DM influence function, pupil shear, pupil transmittance, etc.) and use control history to tune model
- Alternate between contrast improvement and model improvement

[^0]: ${ }^{1}$ L. Pueyo et al., Appl. Opt. 48, 6296-6312 (2009)
 ${ }^{2}$ A. Give'on et al., Proc. SPIE 7440, 74400D (2009)
 ${ }^{3}$ SM and EFC are equivalent when $\mathbf{E}_{T, k}=0$ and $\boldsymbol{\Gamma}=\alpha \mathbf{I}$

[^1]: ${ }^{4}$ Reminder: $\mathbf{E}_{D, k} \approx \mathbf{E}_{\mathrm{ab}, k}+\mathbf{E}_{\mathrm{DM}, k}\left(\mathbf{a}_{k}\right)$

[^2]: ${ }^{5}$ A. S. Jurling and J. R. Fienup, J. Opt. Soc. Am. A 31(7), 1348-59 (2014)
 ${ }^{6}$ Also known as backpropagation algorithm in machine learning with neural networks

[^3]: ${ }^{7}$ S. D. Will, T. D. Groff, and J. R. Fienup, JATIS (2020, under review)

[^4]: ${ }^{8}$ Courtesy of R. Soummer
 ${ }^{9}$ https://asd.gsfc.nasa.gov/luvoir/

