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Abstract

Learning algorithms related to artificial neural net-
works and in particular for Deep Learning may seem
to involve many bells and whistles, called hyper-
parameters. This chapter is meant as a practical
guide with recommendations for some of the most
commonly used hyper-parameters, in particular in
the context of learning algorithms based on back-
propagated gradient and gradient-based optimiza-
tion. It also discusses how to deal with the fact that
more interesting results can be obtained when allow-
ing one to adjust many hyper-parameters. Overall, it
describes elements of the practice used to successfully
and efficiently train and debug large-scale and often
deep multi-layer neural networks. It closes with open
questions about the training difficulties observed with
deeper architectures.

1 Introduction

Following a decade of lower activity, research in arti-
ficial neural networks was revived after a 2006 break-
through (Hinton et al., 2006; Bengio et al., 2007;
Ranzato et al., 2007) in the area of Deep Learning,
based on greedy layer-wise unsupervised pre-training
of each layer of features. See (Bengio, 2009) for a
review. Many of the practical recommendations that
justified the previous edition of this book are still
valid, and new elements were added, while some sur-
vived longer by virtue of the practical advantages
they provided. The panorama presented in this chap-
ter regards some of these surviving or novel elements

of practice, focusing on learning algorithms aiming
at training deep neural networks, but leaving most
of the material specific to the Boltzmann machine
family to another chapter (Hinton, 2013).

Although such recommendations come out of a liv-
ing practice that emerged from years of experimenta-
tion and to some extent mathematical justification,
they should be challenged. They constitute a good
starting point for the experimenter and user of learn-
ing algorithms but very often have not been formally
validated, leaving open many questions that can be
answered either by theoretical analysis or by solid
comparative experimental work (ideally by both). A
good indication of the need for such validation is that
different researchers and research groups do not al-
ways agree on the practice of training neural net-
works.

Several of the recommendations presented here can
be found implemented in the Deep Learning Tutori-
als1 and in the related Pylearn2 library2, all based on
the Theano library (discussed below) written in the
Python programming language.

The 2006 Deep Learning break-
through (Hinton et al., 2006; Bengio et al., 2007;
Ranzato et al., 2007) centered on the use of un-
supervised representation learning to help learning
internal representations3 by providing a local train-

1 http://deeplearning.net/tutorial/
2 http://deeplearning.net/software/pylearn2
3 A neural network computes a sequence of data transfor-

mations, each step encoding the raw input into an intermediate
or internal representation, in principle to make the prediction
or modeling task of interest easier.
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ing signal at each level of a hierarchy of features4.
Unsupervised representation learning algorithms can
be applied several times to learn different layers
of a deep model. Several unsupervised represen-
tation learning algorithms have been proposed
since then. Those covered in this chapter (such as
auto-encoder variants) retain many of the properties
of artificial multi-layer neural networks, relying
on the back-propagation algorithm to estimate
stochastic gradients. Deep Learning algorithms
such as those based on the Boltzmann machine
and those based on auto-encoder or sparse coding
variants often include a supervised fine-tuning stage.
This supervised fine-tuning as well as the gradient
descent performed with auto-encoder variants also
involves the back-propagation algorithm, just as
like when training deterministic feedforward or
recurrent artificial neural networks. Hence this
chapter also includes recommendations for training
ordinary supervised deterministic neural networks
or more generally, most machine learning algorithms
relying on iterative gradient-based optimization of
a parametrized learner with respect to an explicit
training criterion.

This chapter assumes that the reader already un-
derstands the standard algorithms for training su-
pervised multi-layer neural networks, with the loss
gradient computed thanks to the back-propagation
algorithm (Rumelhart et al., 1986). It starts by
explaining basic concepts behind Deep Learning
and the greedy layer-wise pretraining strategy (Sec-
tion 1.1), and recent unsupervised pre-training al-
gorithms (denoising and contractive auto-encoders)
that are closely related in the way they are trained
to standard multi-layer neural networks (Section 1.2).
It then reviews in Section 2 basic concepts in it-
erative gradient-based optimization and in particu-
lar the stochastic gradient method, gradient com-
putation with a flow graph, automatic differenta-

4 In standard multi-layer neural networks trained using
back-propagated gradients, the only signal that drives param-
eter updates is provided at the output of the network (and
then propagated backwards). Some unsupervised learning al-
gorithms provide a local source of guidance for the parameter
update in each layer, based only on the inputs and outputs of
that layer.

tion. The main section of this chapter is Section 3,
which explains hyper-parameters in general, their op-
timization, and specifically covers the main hyper-
parameters of neural networks. Section 4 briefly de-
scribes simple ideas and methods to debug and visu-
alize neural networks, while Section 5 covers paral-
lelism, sparse high-dimensional inputs, symbolic in-
puts and embeddings, and multi-relational learning.
The chapter closes (Section 6) with open questions
on the difficulty of training deep architectures and
improving the optimization methods for neural net-
works.

1.1 Deep Learning and Greedy Layer-

Wise Pretraining

The notion of reuse, which explains the power of
distributed representations (Bengio, 2009), is also
at the heart of the theoretical advantages behind
Deep Learning. Complexity theory of circuits,
e.g. (H̊astad, 1986; H̊astad and Goldmann, 1991),
(which include neural networks as special cases) has
much preceded the recent research on deep learning.
The depth of a circuit is the length of the longest
path from an input node of the circuit to an out-
put node of the circuit. Formally, one can change
the depth of a given circuit by changing the defini-
tion of what each node can compute, but only by a
constant factor (Bengio, 2009). The typical compu-
tations we allow in each node include: weighted sum,
product, artificial neuron model (such as a mono-
tone non-linearity on top of an affine transforma-
tion), computation of a kernel, or logic gates. Theo-
retical results (H̊astad, 1986; H̊astad and Goldmann,
1991; Bengio et al., 2006b; Bengio and LeCun, 2007;
Bengio and Delalleau, 2011) clearly identify families
of functions where a deep representation can be expo-
nentially more efficient than one that is insufficiently
deep. If the same set of functions can be represented
from within a family of architectures associated with
a smaller VC-dimension (e.g. less hidden units5),
learning theory would suggest that it can be learned

5 Note that in our experiments, deep architectures tend to
generalize very well even when they have quite large numbers
of parameters.
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with fewer examples, yielding improvements in both
computational efficiency and statistical efficiency.

Another important motivation for feature learning
and Deep Learning is that they can be done with un-
labeled examples, so long as the factors (unobserved
random variables explaining the data) relevant to the
questions we will ask later (e.g. classes to be pre-
dicted) are somehow salient in the input distribution
itself. This is true under the manifold hypothesis,
which states that natural classes and other high-level
concepts in which humans are interested are asso-
ciated with low-dimensional regions in input space
(manifolds) near which the distribution concentrates,
and that different class manifolds are well-separated
by regions of very low density. It means that a small
semantic change around a particular example can
be captured by changing only a few numbers in a
high-level abstract representation space. As a conse-
quence, feature learning and Deep Learning are in-
timately related to principles of unsupervised learn-
ing, and they can work in the semi-supervised setting
(where only a few examples are labeled), as well as in
the transfer learning and multi-task settings (where
we aim to generalize to new classes or tasks). The
underlying hypothesis is that many of the underlying
factors are shared across classes or tasks. Since rep-
resentation learning aims to extract and isolate these
factors, representations can be shared across classes
and tasks.

One of the most commonly used approaches for
training deep neural networks is based on greedy
layer-wise pre-training (Bengio et al., 2007). The
idea, first introduced in Hinton et al. (2006), is to
train one layer of a deep architecture at a time us-
ing unsupervised representation learning. Each level
takes as input the representation learned at the pre-
vious level and learns a new representation. The
learned representation(s) can then be used as input
to predict variables of interest, for example to clas-
sify objects. After unsupervised pre-training, one can
also perform supervised fine-tuning of the whole sys-
tem6, i.e., optimize not just the classifier but also
the lower levels of the feature hierarchy with respect

6 The whole system composes the computation of the rep-
resentation with computation of the predictor’s output.

to some objective of interest. Combining unsuper-
vised pre-training and supervised fine-tuning usu-
ally gives better generalization than pure supervised
learning from a purely random initialization. The
unsupervised representation learning algorithms for
pre-training proposed in 2006 were the Restricted
Boltzmann Machine or RBM (Hinton et al., 2006),
the auto-encoder (Bengio et al., 2007) and a spar-
sifying form of auto-encoder similar to sparse cod-
ing (Ranzato et al., 2007).

1.2 Denoising and Contractive Auto-

Encoders

An auto-encoder has two parts: an encoder func-
tion f that maps the input x to a representation
h = f(x), and a decoder function g that maps h
back in the space of x in order to reconstruct x.
In the regular auto-encoder the reconstruction func-
tion r(·) = g(f(·)) is trained to minimize the average
value of a reconstruction loss on the training exam-
ples. Note that reconstruction loss should be high for
most other input configurations7. The regularization
mechanism makes sure that reconstruction cannot be
perfect everywhere, while minimizing the reconstruc-
tion loss at training examples digs a hole in recon-
struction error where the density of training exam-
ples is large. Examples of reconstruction loss func-
tions include ||x−r(x)||2 (for real-valued inputs) and
−
∑

i xi log ri(x) + (1 − xi) log(1 − ri(x)) (when in-
terpreting xi as a bit or a probability of a binary
event). Auto-encoders capture the input distribu-
tion by learning to better reconstruct more likely in-
put configurations. The difference between the recon-
struction vector and the input vector can be shown to
be related to the log-density gradient as estimated by
the learner (Vincent, 2011; Bengio et al., 2012) and
the Jacobian matrix of the reconstruction with re-
spect to the input gives information about the second
derivative of the density, i.e., in which direction the
density remains high when you are on a high-density

7 Different regularization mechanisms have been proposed
to push reconstruction error up in low density areas: denoising
criterion, contractive criterion, and code sparsity. It has been
argued that such constraints play a role similar to the partition
function for Boltzmann machines (Ranzato et al., 2008a).
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manifold (Rifai et al., 2011a; Bengio et al., 2012). In
the Denoising Auto-Encoder (DAE) and the Con-
tractive Auto-Encoder (CAE), the training procedure
also introduces robustness (insensitivity to small vari-
ations), respectively in the reconstruction r(x) or in
the representation f(x). In the DAE (Vincent et al.,
2008, 2010), this is achieved by training with stochas-
tically corrupted inputs, but trying to reconstruct the
uncorrupted inputs. In the CAE (Rifai et al., 2011a),
this is achieved by adding an explicit regularizing
term in the training criterion, proportional to the

norm of the Jacobian of the encoder, ||∂f(x)
∂x
||2. But

the CAE and the DAE are very related (Bengio et al.,
2012): when the noise is Gaussian and small, the
denoising error minimized by the DAE is equiva-
lent to minimizing the norm of the Jacobian of the
reconstruction function r(·) = g(f(·)), whereas the
CAE minimizes the norm of the Jacobian of the en-
coder f(·). Besides Gaussian noise, another interest-
ing form of corruption has been very successful with
DAEs: it is called the masking corruption and con-
sists in randomly zeroing out a large fraction (like
20% or even 50%) of the inputs, where the zeroed
out subset is randomly selected for each example. In
addition to the contractive effect, it forces the learned
encoder to be able to rely only on an arbitrary subset
of the input features.

Another way to prevent the auto-encoder from per-
fectly reconstructing everywhere is to introduce a
sparsity penalty on h, discussed below (Section 3.1).

1.3 Online Learning and Optimization

of Generalization Error

The objective of learning is not to minimize training
error or even the training criterion. The latter is a
surrogate for generalization error, i.e., performance
on new (out-of-sample) examples, and there are no
hard guarantees that minimizing the training crite-
rion will yield good generalization error: it depends
on the appropriateness of the parametrization and
training criterion (with the corresponding prior they
imply) for the task at hand.

Many learning tasks of interest will require huge
quantities of data (most of which will be unlabeled)

and as the number of examples increases, so long as
capacity is limited (the number of parameters is small
compared to the number of examples), training er-
ror and generalization approach each other. In the
regime of such large datasets, we can consider that
the learner sees an unending stream of examples (e.g.,
think about a process that harvests text and images
from the web and feeds it to a machine learning algo-
rithm). In that context, it is most efficient to simply
update the parameters of the model after each exam-
ple or few examples, as they arrive. This is the ideal
online learning scenario, and in a simplified setting,
we can even consider each new example z as being
sampled i.i.d. from an unknown generating distribu-
tion with probability density p(z). More realistically,
examples in online learning do not arrive i.i.d. but
instead from an unknown stochastic process which
exhibits serial correlation and other temporal depen-
dencies. Many learning algorithms rely on gradient-
based numerical optimization of a training criterion.
Let L(z, θ) be the loss incurred on example z when
the parameter vector takes value θ. The gradient
vector for the loss associated with a single example

is ∂L(z,θ)
∂θ

.
If we consider the simplified case of i.i.d. data,

there is an interesting observation to be made: the
online learner is performing stochastic gradient de-
scent on its generalization error. Indeed, the gener-
alization error C of a learner with parameters θ and
loss function L is

C = E[L(z, θ)] =

∫

p(z)L(z, θ)dz

while the stochastic gradient from sample z is

ĝ =
∂L(z, θ)

∂θ

with z a random variable sampled from p. The gra-
dient of generalization error is

∂C

∂θ
=

∂

∂θ

∫

p(z)L(z, θ)dz =

∫

p(z)
∂L(z, θ)

∂θ
dz = E[ĝ]

showing that the online gradient ĝ is an unbiased es-
timator of the generalization error gradient ∂C

∂θ
. It

means that online learners, when given a stream of
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non-repetitive training data, really optimize (maybe
not in the optimal way, i.e., using a first-order gra-
dient technique) what we really care about: general-
ization error.

2 Gradients

2.1 Gradient Descent and Learning

Rate

The gradient or an estimator of the gradient is
used as the core part the computation of parame-
ter updates for gradient-based numerical optimiza-
tion algorithms. For example, simple online (or
stochastic) gradient descent (Robbins and Monro,
1951; Bottou and LeCun, 2004) updates the param-
eters after each example is seen, according to

θ(t) ← θ(t−1) − ǫt
∂L(zt, θ)

∂θ

where zt is an example sampled at iteration t and
where ǫt is a hyper-parameter that is called the learn-
ing rate and whose choice is crucial. If the learn-
ing rate is too large8, the average loss will increase.
The optimal learning rate is usually close to (by a
factor of 2) the largest learning rate that does not
cause divergence of the training criterion, an observa-
tion that can guide heuristics for setting the learning
rate (Bengio, 2011), e.g., start with a large learning
rate and if the training criterion diverges, try again
with 3 times smaller learning rate, etc., until no di-
vergence is observed.

See Bottou (2013) for a deeper treatment of
stochastic gradient descent, including suggestions to
set learning rate schedule and improve the asymp-
totic convergence through averaging.

In practice, we use mini-batch updates based on
an average of the gradients9 inside each block of B

8 above a value which is approximately 2 times the largest
eigenvalue of the average loss Hessian matrix

9 Compared to a sum, an average makes a small change in
B have only a small effect on the optimal learning rate, with an
increase in B generally allowing a small increase in the learning
rate because of the reduced variance of the gradient.

examples:

θ(t) ← θ(t−1) − ǫt
1

B

B(t+1)
∑

t′=Bt+1

∂L(zt′ , θ)

∂θ
. (1)

With B = 1 we are back to ordinary online gradient
descent, while with B equal to the training set size,
this is standard (also called “batch”) gradient de-
scent. With intermediate values of B there is gener-
ally a sweet spot. When B increases we can get more
multiply-add operations per second by taking advan-
tage of parallelism or efficient matrix-matrix multipli-
cations (instead of separate matrix-vector multiplica-
tions), often gaining a factor of 2 in practice in overall
training time. On the other hand, as B increases, the
number of updates per computation done decreases,
which slows down convergence (in terms of error vs
number of multiply-add operations performed) be-
cause less updates can be done in the same computing
time. Combining these two opposing effects yields a
typical U-curve with a sweet spot at an intermediate
value of B.
Keep in mind that even the true gradient direction

(averaging over the whole training set) is only the
steepest descent direction locally but may not point
in the right direction when considering larger steps.
In particular, because the training criterion is not
quadratic in the parameters, as one moves in param-
eter space the optimal descent direction keeps chang-
ing. Because the gradient direction is not quite the
right direction of descent, there is no point in spend-
ing a lot of computation to estimate it precisely for
gradient descent. Instead, doing more updates more
frequently helps to explore more and faster, especially
with large learning rates. In addition, smaller values
of B may benefit from more exploration in parame-
ter space and a form of regularization both due to the
“noise” injected in the gradient estimator, which may
explain the better test results sometimes observed
with smaller B.
When the training set is finite, training proceeds

by sweeps through the training set called an epoch,
and full training usually requires many epochs (iter-
ations through the training set). Note that stochas-
tic gradient (either one example at a time or with
mini-batches) is different from ordinary gradient de-
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scent, sometimes called “batch gradient descent”,
which corresponds to the case where B equals the
training set size, i.e., there is one parameter update
per epoch). The great advantage of stochastic gra-
dient descent and other online or minibatch update
methods is that their convergence does not depend
on the size of the training set, only on the number
of updates and the richness of the training distribu-
tion. In the limit of a large or infinite training set,
a batch method (which updates only after seeing all
the examples) is hopeless. In fact, even for ordinary
datasets of tens or hundreds of thousands of exam-
ples (or more!), stochastic gradient descent converges
much faster than ordinary (batch) gradient descent,
and beyond some dataset sizes the speed-up is al-
most linear (i.e., doubling the size almost doubles the
gain)10. It is really important to use the stochastic
version in order to get reasonable clock-time conver-
gence speeds.

As for any stochastic gradient descent method (in-
cluding the mini-batch case), it is important for ef-
ficiency of the estimator that each example or mini-
batch be sampled approximately independently. Be-
cause random access to memory (or even worse, to
disk) is expensive, a good approximation, called in-
cremental gradient (Bertsekas, 2010), is to visit the
examples (or mini-batches) in a fixed order corre-
sponding to their order in memory or disk (repeating
the examples in the same order on a second epoch, if
we are not in the pure online case where each exam-
ple is visited only once). In this context, it is safer if
the examples or mini-batches are first put in a ran-
dom order (to make sure this is the case, it could
be useful to first shuffle the examples). Faster con-
vergence has been observed if the order in which the
mini-batches are visited is changed for each epoch,
which can be reasonably efficient if the training set
holds in computer memory.

10 On the other hand, batch methods can be parallelized
easily, which becomes an important advantage with currently
available forms of computing power.

2.2 Gradient Computation and Auto-

matic Differentiation

The gradient can be either computed manually or
through automatic differentiation. Either way, it
helps to structure this computation as a flow graph,
in order to prevent mathematical mistakes and make
sure an implementation is computationally efficient.
The computation of the loss L(z, θ) as a function of
θ is laid out in a graph whose nodes correspond to
elementary operations such as addition, multiplica-
tion, and non-linear operations such as the neural
networks activation function (e.g., sigmoid or hyper-
bolic tangent), possibly at the level of vectors, matri-
ces or tensors. The flow graph is directed and acyclic
and has three types of nodes: input nodes, internal
nodes, and output nodes. Each of its nodes is as-
sociated with a numerical output which is the result
of the application of that computation (none in the
case of input nodes), taking as input the output of
previous nodes in a directed acyclic graph. Example
z and parameter vector θ (or their elements) are the
input nodes of the graph (i.e., they do not have in-
puts themselves) and L(z, θ) is a scalar output of the
graph. Note that here, in the supervised case, z can
include an input part x (e.g. an image) and a target
part y (e.g. a target class associated with an object
in the image). In the unsupervised case z = x. In
a semi-supervised case, there is a mix of labeled and
unlabeled examples, and z includes y on the labeled
examples but not on the unlabeled ones.
In addition to associating a numerical output oa to

each node a of the flow graph, we can associate a gra-

dient ga = ∂L(z,θ)
∂oa

. The gradient will be defined and
computed recursively in the graph, in the opposite
direction of the computation of the nodes’ outputs,
i.e., whereas oa is computed using outputs op of pre-
decessor nodes p of a, ga will be computed using the
gradients gs of successor nodes s of a. More precisely,
the chain rule dictates

ga =
∑

s

gs
∂os
∂oa

where the sum is over immediate successors of a.
Only output nodes have no successor, and in par-
ticular for the output node that computes L, the

6



gradient is set to 1 since ∂L
∂L

= 1, thus initializing
the recursion. Manual or automatic differentiation
then only requires to define the partial derivative as-
sociated with each type of operation performed by
any node of the graph. When implementing gradi-
ent descent algorithms with manual differentiation
the result tends to be verbose, brittle code that lacks
modularity – all bad things in terms of software en-
gineering. A better approach is to express the flow
graph in terms of objects that modularize how to
compute outputs from inputs as well as how to com-
pute the partial derivatives necessary for gradient de-
scent. One can pre-define the operations of these ob-
jects (in a “forward propagation” or fprop method)
and their partial derivatives (in a “backward prop-
agation” or bprop method) and encapsulate these
computations in an object that knows how to com-
pute its output given its inputs, and how to com-
pute the gradient with respect to its inputs given
the gradient with respect to its output. This is the
strategy adopted in the Theano library11 with its Op
objects (Bergstra et al., 2010), as well as in libraries
such as Torch12 (Collobert et al., 2011b) and Lush13.
Compared to Torch and Lush, Theano adds an in-

teresting ingredient which makes it a full-fledged au-
tomatic differentiation tool: symbolic computation.
The flow graph itself (without the numerical values
attached) can be viewed as a symbolic representation
(in a data structure) of a numerical computation. In
Theano, the gradient computation is first performed
symbolically, i.e., each Op object knows how to create
other Ops corresponding to the computation of the
partial derivatives associated with that Op. Hence the
symbolic differentiation of the output of a flow graph
with respect to any or all of its input nodes can be
performed easily in most cases, yielding another flow
graph which specifies how to compute these gradi-
ents, given the input of the original graph. Since the
gradient graph typically contains the original graph
(mapping parameters to loss) as a sub-graph, in or-
der to make computations efficient it is important to
automate (as done in Theano) a number of simplifica-
tions which are graph transformations preserving the

11 http://deeplearning.net/software/theano/
12 http://www.torch.ch
13 http://lush.sourceforge.net

semantics of the output (given the input) but yield-
ing smaller (or more numerically stable or more effi-
ciently computed) graphs (e.g., removing redundant
computations). To take advantage of the fact that
computing the loss gradient includes as a first step
computing the loss itself, it is advantageous to struc-
ture the code so that both the loss and its gradient are
computed at once, with a single graph having multi-
ple outputs. The advantages of performing gradient
computations symbolically are numerous. First of all,
one can readily compute gradients over gradients, i.e.,
second derivatives, which are useful for some learn-
ing algorithms. Second, one can define algorithms or
training criteria involving gradients themselves, as re-
quired for example in the Contractive Auto-Encoder
(which uses the norm of a Jacobian matrix in its
training criterion, i.e., really requires second deriva-
tives, which here are cheap to compute). Third, it
makes it easy to implement other useful graph trans-
formations such as graph simplifications or numerical
optimizations and transformations that help making
the numerical results more robust and more efficient
(such as working in the domain of logarithms of prob-
abilities rather than in the domain of probabilities
directly). Other potential beneficial applications of
such symbolic manipulations include parallelization
and additional differential operators (such as the R-
operator, recently implemented in Theano, which is
very useful to compute the product of a Jacobian ma-

trix ∂f(x)
∂x

or Hessian matrix ∂2L(x,θ)
∂θ2 with a vector

without ever having to actually compute and store
the matrix itself (Pearlmutter, 1994)).

3 Hyper-Parameters

A pure learning algorithm can be seen as a func-
tion taking training data as input and producing
as output a function (e.g. a predictor) or model
(i.e. a bunch of functions). However, in practice,
many learning algorithms involve hyper-parameters,
i.e., annoying knobs to be adjusted. In many algo-
rithms such as Deep Learning algorithms the number
of hyper-parameters (ten or more!) can make the idea
of having to adjust all of them unappealing. In addi-
tion, it has been shown that the use of computer clus-
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ters for hyper-parameter selection can have an im-
portant effect on results (Pinto et al., 2009). Choos-
ing hyper-parameter values is formally equivalent to
the question of model selection, i.e., given a family
or set of learning algorithms, how to pick the most
appropriate one inside the set? We define a hyper-
parameter for a learning algorithm A as a variable to
be set prior to the actual application of A to the data,
one that is not directly selected by the learning algo-
rithm itself. It is basically an outside control knob.
It can be discrete (as in model selection) or continu-
ous (such as the learning rate discussed above). Of
course, one can hide these hyper-parameters by wrap-
ping another learning algorithm, say B, around A, to
selects A’s hyper-parameters (e.g. to minimize vali-
dation set error). We can then call B a hyper-learner,
and if B has no hyper-parameters itself then the com-
position of B over A could be a “pure” learning al-
gorithm, with no hyper-parameter. In the end, to
apply a learner to training data, one has to have a
pure learning algorithm. The hyper-parameters can
be fixed by hand or tuned by an algorithm, but their
value has to be selected. The value of some hyper-
parameters can be selected based on the performance
of A on its training data, but most cannot. For any
hyper-parameter that has an impact on the effective
capacity of a learner, it makes more sense to select its
value based on out-of-sample data (outside the train-
ing set), e.g., a validation set performance, online er-
ror, or cross-validation error. Note that some learn-
ing algorithms (in particular unsupervised learning
algorithms such as algorithms for training RBMs by
approximate maximum likelihood) are problematic in
this respect because we cannot directly measure the
quantity that is to be optimized (e.g. the likelihood)
because it is intractable. On the other hand, the
expected denoising reconstruction error is easy to es-
timate (by just averaging the denoising error over a
validation set).

Once some out-of-sample data has been used for
selecting hyper-parameter values, it cannot be used
anymore to obtain an unbiased estimator of gener-
alization performance, so one typically uses a test
set (or double cross-validation14, in the case of small

14 Double cross-validation applies recursively the idea of

datasets) to estimate generalization error of the pure
learning algorithm (with hyper-parameter selection
hidden inside).

3.1 Neural Network Hyper-

Parameters

Different learning algorithms involve different sets of
hyper-parameters, and it is useful to get a sense of
the kinds of choices that practitioners have to make
in choosing their values. We focus here mostly on
those relevant to neural networks and Deep Learning
algorithms.

3.1.1 Hyper-Parameters of the Approximate
Optimization

First of all, several learning algorithms can be viewed
as the combination of two elements: a training cri-
terion and a model (e.g., a family of functions, a
parametrization) on the one hand, and on the other
hand, a particular procedure for approximately op-
timizing this criterion. Correspondingly, one should
distinguish hyper-parameters associated with the op-
timizer from hyper-parameters associated with the
model itself, i.e., typically the function class, regular-
izer and loss function. We have already mentioned
above some of the hyper-parameters typically asso-
ciated with gradient-based optimization. Here is a
more extensive descriptive list, focusing on those used
in stochastic (mini-batch) gradient descent (although
number of training iterations is used for all iterative
optimization algorithms).

• The initial learning rate (ǫ0 below, Eq.(2)).
This is often the single most important hyper-
parameter and one should always make sure that
it has been tuned (up to approximately a fac-
tor of 2). Typical values for a neural network
with standardized inputs (or inputs mapped to
the (0,1) interval) are less than 1 and greater
than 10−6 but these should not be taken as strict

cross-validation, using an outer loop cross-validation to evalu-
ate generalization error and then applying an inner loop cross-
validation inside each outer loop split’s training subset (i.e.,
splitting it again into training and validation folds) in order to
select hyper-parameters for that split.
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ranges and greatly depend on the parametriza-
tion of the model. A default value of 0.01 typi-
cally works for standard multi-layer neural net-
works but it would be foolish to rely exclu-
sively on this default value. If there is only
time to optimize one hyper-parameter and one
uses stochastic gradient descent, then this is the
hyper-parameter that is worth tuning.

• The choice of strategy for decreasing or adapt-
ing the learning rate schedule (with hyper-
parameters such as the time constant τ in Eq. (2)
below). The default value of τ →∞ means that
the learning rate is constant over training it-
erations. In many cases the benefit of choos-
ing other than this default value is small. An
example of O(1/t) learning rate schedule, used
in Bergstra and Bengio (2012) is

ǫt =
ǫ0τ

max(t, τ)
(2)

which keeps the learning rate constant for the
first τ steps and then decreases it in O(1/tα),
with traditional recommendations (based on
asymptotic analysis of the convex case) suggest-
ing α = 1. See Bach and Moulines (2011) for a
recent analysis of the rate of convergence for the
general case of α ≤ 1, suggesting that smaller
values of α should be used in the non-convex
case, especially when using a gradient averaging
or momentum technique (see below). An adap-
tive and heuristic way of automatically setting
τ above is to keep ǫt constant until the training
criterion stops decreasing significantly (by more
than some relative improvement threshold) from
epoch to epoch. That threshold is a less sensi-
tive hyper-parameter than τ itself. An alterna-
tive to a fixed schedule with a couple of (global)
free hyper-parameters like in the above formula
is the use of an adaptive learning rate heuristic,
e.g., the simple procedure proposed in Bottou
(2013): at regular intervals during training, us-
ing a fixed small subset of the training set (what
matters is only the number of examples used,
not what fraction of the whole training set it
represents), continue training with N different

choices of learning rate (all in parallel), and keep
the value that gave the best results until the next
re-estimation of the optimal learning rate. Other
examples of adaptive learning rate strategies are
discussed below (Sec. 6.2).

• The mini-batch size (B in Eq. (1)) is typi-
cally chosen between 1 and a few hundreds, e.g.
B = 32 is a good default value, with values above
10 taking advantage of the speed-up of matrix-
matrix products over matrix-vector products.
The impact of B is mostly computational, i.e.,
larger B yield faster computation (with ap-
propriate implementations) but requires visiting
more examples in order to reach the same error,
since there are less updates per epoch. In the-
ory, this hyper-parameter should impact train-
ing time and not so much test performance, so it
can be optimized separately of the other hyper-
parameters, by comparing training curves (train-
ing and validation error vs amount of training
time), after the other hyper-parameters (except
learning rate) have been selected. B and ǫ0 may
slightly interact with other hyper-parameters so
both should be re-optimized at the end. Once
B is selected, it can generally be fixed while the
other hyper-parameters can be further optimized
(except for a momentum hyper-parameter, if one
is used).

• Number of training iterations T (measured
in mini-batch updates). This hyper-parameter
is particular in that it can be optimized almost
for free using the principle of early stopping: by
keeping track of the out-of-sample error (as for
example estimated on a validation set) as train-
ing progresses (every N updates), one can decide
how long to train for any given setting of all the
other hyper-parameters. Early stopping is an
inexpensive way to avoid strong overfitting, i.e.,
even if the other hyper-parameters would yield
to overfitting, early stopping will considerably
reduce the overfitting damage that would other-
wise ensue. It also means that it hides the over-
fitting effect of other hyper-parameters, possibly
obscuring the analysis that one may want to do
when trying to figure out the effect of individual
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hyper-parameters, i.e., it tends to even out the
performance obtained by many otherwise overfit-
ting configurations of hyper-parameters by com-
pensating a too large capacity with a smaller
training time. For this reason, it might be use-
ful to turn early-stopping off when analyzing the
effect of individual hyper-parameters. Now let
us turn to implementation details. Practically,
one needs to continue training beyond the se-
lected number of training iterations T̂ (which
should be the point of lowest validation error
in the training run) in order to ascertain that
validation error is unlikely to go lower than at
the selected point. A heuristic introduced in the
Deep Learning Tutorials15 is based on the idea
of patience (set initially to 10000 examples in the
MLP tutorial), which is a minimum number of
training examples to see after the candidate se-
lected point T̂ before deciding to stop training
(i.e. before accepting this candidate as the final
answer). As training proceeds and new candi-
date selected points T̂ (new minima of the vali-
dation error) are observed, the patience param-
eter is increased, either multiplicatively or addi-
tively on top of the last T̂ found. Hence, if we
find a new minimum16 at t, we save the current
best model, update T̂ ← t and we increase our
patience up to t+constant or t× constant. Note
that validation error should not be estimated af-
ter each training update (that would be really
wasteful) but after every N examples, where N
is at least as large as the validation set (ideally
several times larger so that the early stopping
overhead remains small)17.

• Momentum β. It has long been advo-
cated (Hinton, 1978, 2010) to temporally smooth
out the stochastic gradient samples obtained

15 http://deeplearning.net/tutorial/
16 Ideally, we should use a statistical test of significance and

accept a new minimum (over a longer training period) only if
the improvement is statistically significant, based on the size
and variance estimates one can compute for the validation set.

17 When an extra processor on the same machine is available,
validation error can conveniently be recomputed by a proces-
sor different from the one performing the training updates,
allowing more frequent computation of validation error.

during the stochastic gradient descent. For ex-
ample, a moving average of the past gradients
can be computed with ḡ ← (1−β)ḡ+βg, where g

is the instantaneous gradient ∂L(zt,θ)
∂θ

or a mini-
batch average, and β is a small positive coeffi-
cient that controls how fast the old examples get
downweighted in the moving average. The sim-
plest momentum trick is to make the updates
proportional to this smoothed gradient estima-
tor ḡ instead of the instantaneous gradient g.
The idea is that it removes some of the noise and
oscillations that gradient descent has, in particu-
lar in the directions of high curvature of the loss
function18. A default value of β = 1 (no mo-
mentum) works well in many cases but in some
cases momentum seems to make a positive dif-
ference. Polyak averaging (Polyak and Juditsky,
1992) is a related form of parameter averag-
ing19 that has theoretical advantages and has
been advocated and shown to bring improve-
ments on some unsupervised learning procedures
such as RBMs (Swersky et al., 2010). More re-
cently, several mathematically motivated algo-
rithms (Nesterov, 2009; Le Roux et al., 2012)
have been proposed that incorporate some form
of momentum and that also ensure much faster
convergence (linear rather than sublinear) com-
pared to stochastic gradient descent, at least for
convex optimization problems. See also Bottou
(2013) for an example of averaged SGD with
successful empirical speedups in the convex
case. Note however that in the pure online
case (stream of examples) and under some as-
sumptions, the sublinear rate of convergence of
stochastic gradient descent with O(1/t) decrease
of learning rate is an optimal rate, at least for
convex problems (Nemirovski and Yudin, 1983).
That would suggest that for really large train-

18 Think about a ball coming down a valley. Since it has not
started from the bottom of the valley it will oscillate between
its sides as it settles deeper, forcing the learning rate to be
small to avoid large oscillations that would kick it out of the
valley. Averaging out the local gradients along the way will
cancel the opposing forces from each side of the valley.

19 Polyak averaging uses for predictions a moving average of
the parameters found in the trajectory of stochastic gradient
descent.
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ing sets it may not be possible to obtain bet-
ter rates than ordinary stochastic gradient de-
scent, albeit the constants in front (which de-
pend on the condition number of the Hessian)
may still be greatly reduced by using second-
order information online (Bottou and LeCun,
2004; Bottou and Bousquet, 2008).

• Layer-specific optimization hyper-
parameters: although rarely done, it is
possible to use different values of optimization
hyper-parameters (such as the learning rate) on
different layers of a multi-layer network. This is
especially appropriate (and easier to do) in the
context of layer-wise unsupervised pre-training,
since each layer is trained separately (while the
layers below are kept fixed). This would be
particularly useful when the number of units
per layer varies a lot from layer to layer. See
the paragraph below entitled Layer-wise opti-
mization of hyper-parameters (Sec. 3.3.4).
Some researchers also advocate the use of
different learning rates for the different types
of parameters one finds in the model, such as
biases and weights in the standard multi-layer
network, but the issue becomes more important
when parameters such as precision or variance
are included in the lot (Courville et al., 2011).

Up to now we have only discussed the hyper-
parameters in the setup where one trains a neural
network by stochastic gradient descent. With other
optimization algorithms, some hyper-parameters
are typically different. For example, Conju-
gate Gradient (CG) algorithms typically have a
number of line search steps (which is a hyper-
parameter) and a tolerance for stopping each line
search (another hyper-parameter). An optimiza-
tion algorithm like L-BFGS (limited-memory Broy-
den–Fletcher–Goldfarb–Shanno) also has a hyper-
parameter controlling the memory usage of the algo-
rithm, the rank of the Hessian approximation kept in
memory, which also has an influence on the efficiency
of each step. Both CG and L-BFGS are iterative
(e.g., one line search per iteration), and the number
of iterations can be optimized as described above for
stochastic gradient descent, with early stopping.

3.2 Hyper-Parameters of the Model

and Training Criterion

Let us now turn to “model” and “criterion” hyper-
parameters typically found in neural networks, espe-
cially deep neural networks.

• Number of hidden units nh. Each layer in a
multi-layer neural network typically has a size
that we are free to set and that controls ca-
pacity. Because of early stopping and possibly
other regularizers (e.g., weight decay, discussed
below), it is mostly important to choose nh large
enough. Larger than optimal values typically do
not hurt generalization performance much, but
of course they require proportionally more com-
putation (in O(n2

h) if scaling all the layers at
the same time in a fully connected architecture).
Like for many other hyper-parameters, there is
the option of allowing a different value of nh for
each hidden layer20 of a deep architecture. See
the paragraph below entitled Layer-wise opti-
mization of hyper-parameters (Sec. 3.3.4).
In a large comparative study (Larochelle et al.,
2009), we found that using the same size for all
layers worked generally better or the same as us-
ing a decreasing size (pyramid-like) or increasing
size (upside down pyramid), but of course this
may be data-dependent. For most tasks that
we worked on, we find that an overcomplete21

first hidden layer works better than an under-
complete one. Another even more often vali-
dated empirical observation is that the optimal
nh is much larger when using unsupervised pre-
training in a supervised neural network, e.g., go-
ing from hundreds of units to thousands of units.
A plausible explanation is that after unsuper-
vised pre-training many of the hidden units are
carrying information that is irrelevant to the spe-
cific supervised task of interest. In order to make
sure that the information relevant to the task is
captured, larger hidden layers are therefore nec-
essary when using unsupervised pre-training.

20 A hidden layer is a group of units that is neither an input
layer nor an output layer.

21 larger than the input vector
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• Weight decay regularization coefficient λ. A
way to reduce overfitting is to add a regulariza-
tion term to the training criterion, which lim-
its the capacity of the learner. The parameters
of machine learning models can be regularized
by pushing them towards a prior value, which
is typically 0. L2 regularization adds a term
λ
∑

i θ
2
i to the training criterion, while L1 reg-

ularization adds a term λ
∑

i |θi|. Both types of
terms can be included. There is a clean Bayesian
justification for such a regularization term: it is
the negative log-prior − logP (θ) on the param-
eters θ. The training criterion then corresponds
to the negative joint likelihood of data and pa-
rameters, − logP (data, θ) = − logP (data|θ) −
logP (θ), with the loss function L(z, θ) being in-
terpreted as − logP (z|θ) and − logP (data|θ) =

−
∑T

t=1 L(zt, θ) if the data consists of T i.i.d.
examples zt. This detail is important to note
because when one is doing stochastic gradient-
based learning, it makes sense to use an unbi-
ased estimator of the gradient of the total train-
ing criterion (including both the total loss and
the regularizer), but one only considers a single
mini-batch or example at a time. How should the
regularizer be weighted in this sum, which is dif-
ferent from the sum of the regularizer and the to-
tal loss on all examples? On each mini-batch up-
date, the gradient of the regularization penalty
should be multiplied not just by λ but also by
B
T
, i.e., one over the number of updates needed

to go once through the training set. When the
training set size is not a multiple of B, the last
mini-batch will have size B′ < B and the contri-
bution of the regularizer to the mini-batch gradi-
ent should therefore be modified accordingly (i.e.

scaled by B′

B
compared to other mini-batches).

In the pure online setting (there is no fixed ahead
training set size nor iterating again on the ex-
amples), it would then make sense to use B

t
at

example t, or one over the number of updates
to date. L2 regularization penalizes large val-
ues more strongly and corresponds to a Gaus-

sian prior ∝ exp(− 1
2
||θ||2

σ2 ) with prior variance
σ2 = 1/(2λ). Note that there is a connection

between early stopping (see above, choosing the
number of training iterations) and L2 regular-
ization (Collobert and Bengio, 2004a), with one
basically playing the same role as the other (but
early stopping allowing a much more efficient se-
lection of the hyper-parameter value, which sug-
gests dropping L2 regularization altogether when
early-stopping is used). However, L1 regular-
ization behaves differently and can sometimes
be useful, acting as a form of feature selection.
L1 regularization makes sure that parameters
that are not really very useful are driven to zero
(i.e. encouraging sparsity of the parameter val-
ues), and corresponds to a Laplace density prior

∝ e−
|θ|
s with scale parameter s = 1

λ
. L1 regu-

larization often helps to make the input filters22

cleaner (more spatially localized) and easier to
interpret. Stochastic gradient descent will not
yield actual zeros but values hovering around
zero. If both L1 and L2 regularization are used,
a different coefficient (i.e. a different hyper-
parameter) should be considered for each, and
one may also use a different coefficient for differ-
ent layers. In particular, the input weights and
output weights may be treated differently.

One reason for treating output weights differ-
ently (i.e., not relying only on early stopping)
is that we know that it is sufficient to regu-
larize only the output weights in order to con-
strain capacity: in the limit case of the num-
ber of hidden units going to infinity, L2 regular-
ization corresponds to Support Vector Machines
(SVM) while L1 regularization corresponds to
boosting (Bengio et al., 2006a). Another reason
for treating inputs and outputs differently from
hidden units is because they may be sparse. For
example, some input features may be 0 most of
the time while others are non-zero frequently. In
that case, there are fewer examples that inform
the model about that rarely active input feature,
and the corresponding parameters (weights out-
going from the corresponding input units) should

22 The input weights of a 1st layer neuron are often called
“filters” because of analogies with signal processing techniques
such as convolutions.
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be more regularized than the parameters associ-
ated with frequently observed inputs. A similar
situation may occur with target variables that
are sparse (e.g., trying to predict rarely observed
events). In both cases, the effective number of
meaningful updates seen by these parameters is
less than the actual number of updates. This
suggests to scale the regularization coefficient of
these parameters by one over the effective num-
ber of updates seen by the parameter. A related
formula turns up in Bayesian probit regression
applied to sparse inputs (Graepel et al., 2010).
Some practitioners also choose to penalize only
the weights w and not the biases b associated
with the hidden unit activations w′z+b for a unit
taking the vector of values z as input. This guar-
antees that even with strong regularization, the
predictor would converge to the optimal constant
predictor, rather than the one corresponding to
0 activation. For example, with the mean-square
loss and the cross-entropy loss, the optimal con-
stant predictor is the output average.

• Sparsity of activation regularization coeffi-
cient α. A common practice in the Deep
Learning literature (Ranzato et al., 2007, 2008b;
Lee et al., 2008, 2009; Bagnell and Bradley,
2009; Glorot et al., 2011a; Coates and Ng, 2011;
Goodfellow et al., 2011) consists in adding a
penalty term to the training criterion that en-
courages the hidden units to be sparse, i.e.,
with values at or near 0. Although the L1
penalty (discussed above in the case of weights)
can also be applied to hidden units activations,
this is mathematically very different from the
L1 regularization term on parameters. Whereas
the latter corresponds to a prior on the pa-
rameters, the former does not because it in-
volves the training distribution (since we are
looking at data-dependent hidden units out-
puts). Although we will not discuss this much
here, the inspiration for a sparse representa-
tion in Deep Learning comes from the ear-
lier work on sparse coding (Olshausen and Field,
1997). As discussed in Goodfellow et al. (2009)
sparse representations may be advantageous be-

cause they encourage representations that dis-
entangle the underlying factors of representa-
tion. A sparsity-inducing penalty is also a
way to regularize (in the sense of reducing the
number of examples that the learner can learn
by heart) (Ranzato et al., 2008b), which means
that the sparsity coefficient is likely to interact
with the many other hyper-parameters which in-
fluence capacity. In general, increased sparsity
can be compensated by a larger number of hid-
den units.

Several approaches have been proposed to in-
duce a sparse representation (or with more hid-
den units whose activation is closer to 0). One
approach (Ranzato et al., 2008b; Le et al., 2011;
Zou et al., 2011) is simply to penalize the L1
norm of the representation or another function
of the hidden units’ activation (such as the
student-t log-prior). This typically makes sense
for non-linearities such as the sigmoid which
have a saturating output around 0, but not for
the hyperbolic tangent non-linearity (whose sat-
uration is near the -1 and 1 interval borders
rather than near the origin). Another option
is to penalize the biases of the hidden units,
to make them more negative (Ranzato et al.,
2007; Lee et al., 2008; Goodfellow et al., 2009;
Larochelle and Bengio, 2008). Note that penal-
izing the bias runs the danger that the weights
could compensate for the bias23, which could
hurt the numerical optimization of parameters.
When directly penalizing the hidden unit out-
puts, several variants can be found in the litera-
ture, but no clear comparative analysis has been
published to evaluate which one works better.
Although the L1 penalty (i.e., simply α times
the sum of output elements hj in the case of sig-
moid non-linearity) would seem the most natural
(because of its use in sparse coding), it is used
in few papers involving sparse auto-encoders. A
close cousin of the L1 penalty is the Student-
t penalty (log(1 + h2

j)), originally proposed for
sparse coding (Olshausen and Field, 1997). Sev-

23 because the input to the layer generally has a non-zero
average, that when multiplied by the weights acts like a bias
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eral researchers penalize the average output h̄j

(e.g. over a mini-batch), and instead of pushing
it to 0, encourage it to approach a fixed target ρ.
This can be done through a mean-square error
penalty such as

∑

j(ρ − h̄j)
2, or maybe more

sensibly (because hj behaves like a probabil-
ity), a Kullback-Liebler divergence with respect
to the binomial distribution with probability ρ,
−ρ log h̄j − (1 − ρ) log(1 − h̄j)+constant, e.g.,
with ρ = 0.05, as in (Hinton, 2010). In addition
to the regularization penalty itself, the choice
of activation function can have a strong impact
on the sparsity obtained. In particular, rectify-
ing non-linearities (such as max(0, x), instead of
a sigmoid) have been very successful in several
instances (Jarrett et al., 2009; Nair and Hinton,
2010; Glorot et al., 2011a; Mesnil et al., 2011;
Glorot et al., 2011b). The rectifier also re-
lates to the hard tanh (Collobert and Bengio,
2004b), whose derivatives are also 0 or 1.
In sparse coding and sparse predictive cod-
ing (Kavukcuoglu et al., 2009) the activations
are directly optimized and actual zeros are the
expected result of the optimization. In that
case, ordinary stochastic gradient is not guaran-
teed to find these zeros (it will oscillate around)
and other methods such as proximal gradient are
more appropriate (Bertsekas, 2010).

• Neuron non-linearity. The typical neuron
output is s(a) = s(w′x + b), where x is the
vector of inputs into the neuron, w the vec-
tor of weights and b the offset or bias pa-
rameter, while s is a scalar non-linear func-
tion. Several non-linearities have been proposed
and some choices of non-linearities have been
shown to be more successful (Jarrett et al., 2009;
Glorot and Bengio, 2010; Glorot et al., 2011a).
The most commonly used by the author, for hid-
den units, are the sigmoid 1/(1+e−a), the hyper-

bolic tangent ea−e−a

ea+e−a , the rectifier max(0, a) and
the hard tanh (Collobert and Bengio, 2004b).
Note that the sigmoid was shown to yield se-
rious optimization difficulties when used as the
top hidden layer of a deep supervised network
(Glorot and Bengio, 2010) without unsupervised

pre-training, but works well for auto-encoder
variants24. For output (or reconstruction) units,
hard neuron non-linearities like the rectifier do
not make sense because when the unit is satu-
rated (e.g. a < 0 for the rectifier) and associ-
ated with a loss, no gradient is propagated in-
side the network, i.e., there is no chance to cor-
rect the error25. In the case of hidden layers the
gradient manages to go through a subset of the
hidden units, even if the others are saturated.
For output units a good trick is to obtain the
output non-linearity and the loss by considering
the associated negative log-likelihood and choos-
ing an appropriate (conditional) output proba-
bility model, usually in the exponential family.
For example, one can typically take squared er-
ror and linear outputs to correspond to a Gaus-
sian output model, cross-entropy and sigmoids
to correspond to a binomial output model, and
− log output[target class] with softmax outputs
to correspond to multinomial output variables.
For reasons yet to be elucidated, having a sig-
moidal non-linearity on the output (reconstruc-
tion) units (along with target inputs normalized
in the (0,1) interval) seems to be helpful when
training the contractive auto-encoder.

• Weights initialization scaling coefficient.
Biases can generally be initialized to zero
but weights need to be initialized carefully
to break the symmetry between hidden units
of the same layer26. Because different out-
put units receive different gradient signals,
this symmetry breaking issue does not con-

24 The author hypothesizes that this discrepency is due
to the fact that the weight matrix W of an auto-encoder of
the form r(x) = WT sigmoid(Wx) is pulled towards being or-
thonormal since this would make the auto-encoder closer to the
identity function, because WT

Wx ≈ x when W is orthonormal
and x is in the span of the rows of W .

25 A hard non-linearity for the output units non-linearity is
very different from a hard non-linearity in the loss function,
such as the hinge loss. In the latter case the derivative is 0
only when there is no error.

26 By symmetry, if hidden units of the same layer share the
same input and output weights, they will compute the same
output and receive the same gradient, hence performing the
same update and remaining identical, thus wasting capacity.
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cern the output weights (into the output
units), which can therefore also be set to zero.
Although several tricks (LeCun et al., 1998a;
Glorot and Bengio, 2010) for initializing the
weights into hidden layers have been proposed
(i.e. a hyper-parameter is the discrete choice
between them), Bergstra and Bengio (2012) also
inserted as an extra hyper-parameter a scaling
coefficient for the initialization range. These
tricks are based on the idea that units with
more inputs (the fan-in of the unit) should have
smaller weights. Both LeCun et al. (1998a) and
Glorot and Bengio (2010) recommend scaling by
the inverse of the square root of the fan-in, al-
though Glorot and Bengio (2010) and the Deep
Learning Tutorials use a combination of the fan-
in and fan-out, e.g., sample a Uniform(−r, r)
with r =

√

6/(fan-in + fan-out) for hyperbolic

tangent units and r = 4
√

6/(fan-in + fan-out)
for sigmoid units. We have found that we could
avoid any hyper-parameter related to initializa-
tion using these formulas (and the derivation in
Glorot and Bengio (2010) can be used to derive
the formula for other settings). Note however
that in the case of RBMs, a zero-mean Gaussian
with a small standard deviation around 0.1 or
0.01 works well (Hinton, 2010) to initialize the
weights, while visible biases are typically set to
their optimal value if the weights were 0, i.e.,
log(x̄/(1 − x̄)) in the case of a binomial visible
unit whose corresponding binary input feature
has empirical mean x̄ in the training set.

An important choice is whether one should use
unsupervised pre-training (and which unsuper-
vised feature learning algorithm to use) in or-
der to initialize parameters. In most settings
we have found unsupervised pre-training to help
and very rarely to hurt, but of course that
implies additional training time and additional
hyper-parameters.

• Random seeds. There are often several sources
of randomness in the training of neural net-
works and deep learners (such as for random
initialization, sampling examples, sampling hid-
den units in stochastic models such as RBMs,

or sampling corruption noise in denoising auto-
encoders). Some random seeds could therefore
yield better results than others. Because of the
presence of local minima in the training criterion
of neural networks (except in the linear case or
with fixed lower layers), parameter initialization
matters. See Erhan et al. (2010b) for an exam-
ple of histograms of test errors for hundreds of
different random seeds. Typically, the choice of
random seed only has a slight effect on the result
and can mostly be ignored in general or for most
of the hyper-parameter search process. If com-
puting power is available, then a final set of jobs
with different random seeds (5 to 10) for a small
set of best choices of hyper-parameter values can
squeeze a bit more performance. Another way to
exploit computing power to push performance a
bit is model averaging, as in Bagging (Breiman,
1994) and Bayesian methods. After training
them, the outputs of different networks (or in
general different learning algorithms) can be av-
eraged. For example, the difference between the
neural networks being averaged into a commit-
tee may come from the different seeds used for
parameter initialization, or the use of different
subsets of input variables, or different subsets of
training examples (the latter being called Bag-
ging).

• Preprocessing. Many preprocessing steps have
been proposed to massage raw data into ap-
propriate inputs for neural networks and model
selection must also choose among them. In
addition to element-wise standardization (sub-
tract mean and divide by standard devia-
tion), Principal Components Analysis (PCA)
has often been advocated (LeCun et al., 1998a;
Bergstra and Bengio, 2012) and also allows di-
mensionality reduction, at the price of an ex-
tra hyper-parameter (the number of principal
components retained, or the proportion of vari-
ance explained). A convenient non-linear pre-
processing is the uniformization (Mesnil et al.,
2011) of each feature (which estimates its cumu-
lative distribution Fi and then transforms each
feature xi by its quantile F−1

i (xi), i.e., returns
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an approximate normalized rank or quantile for
the value xi). A simpler to compute transform
that may help reduce the tails of input features
is a non-linearity such as the logarithm or the
square root, in an attempt to make them more
Gaussian-like.

In addition to the above somewhat generic choices,
more choices arise with different architectures and
learning algorithms. For example, the denois-
ing auto-encoder has a hyper-parameter scaling the
amount of input corruption and the contractive auto-
encoder has as hyper-parameter a coefficient scaling
the norm of the Jacobian of the encoder, i.e., control-
ling the importance of the contraction penalty. The
latter seems to be a rather sensitive hyper-parameter
that must be tuned carefully. The contractive auto-
encoder’s success also seems sensitive to the weight
tying constraint used in many auto-encoder archi-
tectures: the decoder’s weight matrix is equal to the
transpose of the encoder’s weight matrix. The spe-
cific architecture used in the contractive auto-encoder
(with tied weights, sigmoid non-linearies on hidden
and reconstruction units, along with squared loss or
cross-entropy loss) works quite well but other related
variants do not always train well, for reasons that
remain to be understood.

There are also many architectural choices that
are relevant in the case of convolutional architec-
tures (e.g. for modeling images, time-series or
sound) (LeCun et al., 1989, 1998b; Le et al., 2010) in
which hidden units have local receptive fields. Their
discussion is postponed to another chapter (LeCun,
2013).

3.3 Manual Search and Grid Search

Many of the hyper-parameters or model choices de-
scribed above can be ignored by picking a standard
trick suggested here or in some other paper. Still,
one remains with a substantial number of choices to
be made, which may give the impression of neural
network training as an art. With modern comput-
ing facilities based on large computer clusters, it is
however possible to make the optimization of hyper-
parameters a more reproducible and automated pro-

cess, using techniques such as grid search or better,
random search, or even hyper-parameter optimiza-
tion, discussed below.

3.3.1 General guidance for the exploration of
hyper-parameters

First of all, let us consider recommendations for ex-
ploring hyper-parameter settings, whether with man-
ual search, with an automated procedure, or with
a combination of both. We call a numerical hyper-
parameter one that involves choosing a real number or
an integer (where order matters), as opposed to mak-
ing a discrete symbolic choice from an unordered set.
Examples of numerical hyper-parameters are regular-
ization coefficients, number of hidden units, number
of training iterations, etc. One has to think of hyper-
parameter selection as a difficult form of learning:
there is both an optimization problem (looking for
hyper-parameter configurations that yield low vali-
dation error) and a generalization problem: there is
uncertainty about the expected generalization after
optimizing validation performance, and it is possi-
ble to overfit the validation error and get optimisti-
cally biased estimators of performance when com-
paring many hyper-parameter configurations. The
training criterion for this learning is typically the
validation set error, which is a proxy for general-
ization error. Unfortunately, the relation between
hyper-parameters and validation error can be com-
plicated. Although to first approximation we expect
a kind of U-shaped curve (when considering only a
single hyper-parameter, the others being fixed), this
curve can also have noisy variations, in part due to
the use of finite data sets.

• Best value on the border. When considering
the validation error obtained for different values
of a numerical hyper-parameter one should pay
attention as to whether or not the best value
found is near the border of the investigated in-
terval. If it is near the border, then this sug-
gests that better values can be found with val-
ues beyond the border: it is recommended in
that case to explore further, beyond that border.
Because the relation between a hyper-parameter
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and validation error can be noisy, it is gener-
ally not enough to try very few values. For
instance, trying only 3 values for a numerical
hyper-parameter is insufficient, even if the best
value found is the middle one.

• Scale of values considered. Exploring values
of a numerical hyper-parameter entails choosing
a starting interval to be searched, which is there-
fore a kind of hyper-hyper-parameter. By choos-
ing the interval large enough to start with, but
based on previous experience with this hyper-
parameter, we ensure that we do not get com-
pletely wrong results. Now instead of choosing
the intermediate values linearly in the chosen in-
terval, it often makes much more sense to con-
sider a linear or uniform sampling in the log-
domain (in the space of the logarithm of the
hyper-parameter). For example, the results ob-
tained with a learning rate of 0.01 are likely to
be very similar to the results with 0.011 while
results with 0.001 could be quite different from
results with 0.002 even though the absolute dif-
ference is the same in both cases. The ratio
between different values is often a better guide
of the expected impact of the change. That is
why exploring uniformly or regularly-spaced val-
ues in the space of the logarithm of the numer-
ical hyper-parameter is typically preferred for
positive-valued numerical hyper-parameters.

• Computational considerations. Validation
error is actually not the only measure to consider
in selecting hyper-parameters. Often, one has to
consider computational cost, either of training
or prediction. Computing resources for training
and prediction are limited and generally con-
dition the choice of intervals of considered val-
ues: for example increasing the number of hid-
den units or number of training iterations also
scales up computation. An interesting idea is
to use computationally cheap estimators of val-
idation error to select some hyper-parameters.
For example, Saxe et al. (2011) showed that the
architecture hyper-parameters of convolutional
networks could be selected using random weights
in the lower layers of the network (filters of

the convolution). While this yields a noisy and
biased (pessimistic) estimator of the validation
error which would otherwise be obtained with
full training, this cheap estimator appears to be
correlated with the expensive validation error.
Hence this cheap estimator is enough for select-
ing some hyper-parameters (or for keeping un-
der consideration for further and more expen-
sive evaluation only the few best choices found).
Even without cheap estimators of generalization
error, high-throughput computing (e.g., on clus-
ters, GPUs, or clusters of GPUs) can be ex-
ploited to run not just hundreds but thousands
of training jobs, something not conceivable only
a few years ago, with each job taking on the order
of hours or days for larger datasets. With com-
putationally cheap surrogates, some researchers
have run on the order of ten thousands trials,
and we can expect future advances in parallelized
computing power to boost these numbers.

3.3.2 Coordinate Descent and Multi-
Resolution Search

When performing a manual search and with access to
only a single computer, a reasonable strategy is coor-
dinate descent: change only one hyper-parameter at a
time, always making a change from the best configu-
ration of hyper-parameters found up to now. Instead
of a standard coordinate descent (which systemati-
cally cycles through all the variables to be optimized)
one can make sure to regularly fine-tune the most
sensitive variables, such as the learning rate.

Another important idea is that there is no point in
exploring the effect of fine changes before one or more
reasonably good settings have been found. The idea
of multi-resolution search is to start the search by
considering only a few values of the numerical hyper-
parameters (over a large range), or considering large
changes each time a new value is tried. One can then
start from the one or few best configurations found
and explore more locally around them with smaller
variations around these values.

17



3.3.3 Automated and Semi-automated Grid
Search

Once some interval or set of values has been selected
for each hyper-parameter (thus defining a search
space), a simple strategy that exploits parallel com-
puting is the grid search. One first needs to con-
vert the numerical intervals into lists of values (e.g.,
K regularly-spaced values in the log-domain of the
hyper-parameter). The grid search is simply an ex-
haustive search through all the combinations of these
values. The cross-product of these lists contains a
number of elements that is unfortunately exponen-
tial in the number of hyper-parameters (e.g., with
5 hyper-parameters, each allowed to take 6 different
values, one gets 65 = 7776 configurations). In sec-
tion 3.4 below we consider an approach that works
more efficiently than the grid search when the num-
ber of hyper-parameters increases beyond 2 or 3.
The advantage of the grid search, compared to

many other optimization strategies (such as coordi-
nate descent), is that it is fully parallelizable. If a
large computer cluster is available, it is tempting to
choose a model selection strategy that can take ad-
vantage of parallelization. One practical disadvan-
tage of grid search (especially against random search,
Sec. 3.4), with a parallelized set of jobs on a cluster,
is that if only one of the jobs fails27 then one has
to launch another volley of jobs to complete the grid
(and yet a third one if any of these fails, etc.), thus
multiplying the overall computing time.
Typically, a single grid search is not enough and

practitioners tend to proceed with a sequence of grid
searches, each time adjusting the ranges of values
considered based on the previous results obtained.
Although this can be done manually, this procedure
can also be automated by considering the idea of
multi-resolution search to guide this outer loop. Dif-
ferent, more local, grid searches can be launched in
the neighborhood of the best solutions found previ-
ously. In addition, the idea of coordinate descent can
also be thrown in, by making each grid search focus
on only a few of the hyper-parameters. For exam-
ple, it is common practice to start by exploring the

27 For all kinds of hardware and software reasons, a job
failing is very common.

initial learning rate while keeping fixed (and initially
constant) the learning rate descent schedule. Once
the shape of the schedule has been chosen, it may be
possible to further refine the learning rate, but in a
smaller interval around the best value found.
Humans can get very good at performing hyper-

parameter search, and having a human in the loop
also has the advantage that it can help detect bugs
or unwanted or unexpected behavior of a learning
algorithm. However, for the sake of reproducibil-
ity, machine learning researchers should strive to use
procedures that do not involve human decisions in
the middle, only at the outset (e.g., setting hyper-
parameter ranges, which can be specified in a paper
describing the experiments).

3.3.4 Layer-wise optimization of hyper-
parameters

In the case of Deep Learning with unsupervised
pre-training there is an opportunity for combin-
ing coordinate descent and cheap relative valida-
tion set performance evaluation associated with
some hyper-parameter choices. The idea, described
by Mesnil et al. (2011); Bengio (2011), is to perform
greedy choices for the hyper-parameters associated
with lower layers (near the input) before training the
higher layers. One first trains (unsupervised) the
first layer with different hyper-parameter values and
somehow estimates the relative validation error that
would be obtained from these different configurations
if the final network only had this single layer as in-
ternal representation. In the common case where the
ultimate task is supervised, it means training a simple
supervised predictor (e.g. a linear classifier) on top
of the learned representation. In the case of a linear
predictor (e.g. regression or logistic regression) this
can even be done on the fly while unsupervised train-
ing of the representation progresses (i.e. can be used
for early stopping as well), as in (Larochelle et al.,
2009). Once a set of apparently good (according
to this greedy evaluation) hyper-parameters values
has been found (or possibly using only the best one
found), these good values can be used as starting
point to train (and hyper-optimize) a second layer
in the same way, etc. The completely greedy ap-

18



proach is to keep only the best configuration up to
now (for the lower layers), but keeping the K best
configurations overall only multiplies computational
costs of hyper-parameter selection by K for layers be-
yond the first one, because we would still keep only
the best K configurations from all the 1st layer and
2nd layer hyper-parameters as starting points for ex-
ploring 3rd layer hyper-parameters, etc. This proce-
dure is formalized in the Algorithm 1 below. Since
greedy layer-wise pre-training does not modify the
lower layers when pre-training the upper layers, this
is also very efficient computationally. This proce-
dure allows one to set the hyper-parameters associ-
ated with the unsupervised pre-training stage, and
then there remains hyper-parameters to be selected
for the supervised fine-tuning stage, if one is desired.
A final supervised fine-tuning stage is strongly sug-
gested, especially when there are many labeled exam-
ples (Lamblin and Bengio, 2010).

3.4 Random Sampling of Hyper-

Parameters

A serious problem with the grid search approach to
find good hyper-parameter configurations is that it
scales exponentially badly with the number of hyper-
parameters considered. In the above sections we have
discussed numerous hyper-parameters and if all of
them were to be explored at the same time it would
be impossible to use only a grid search to do so.
One may think that there are no other options sim-

ply because this is an instance of the curse of di-
mensionality. But like we have found in our work
on Deep Learning (Bengio, 2009), if there is some
structure in a target function we are trying to dis-
cover, then there is a chance to find good solutions
without paying an exponential price. It turns out
that in many practical cases we have encountered,
there is a kind of structure that random sampling
can exploit (Bergstra and Bengio, 2012). The idea
of random sampling is to replace the regular grid
by a random (typically uniform) sampling. Each
tested hyper-parameter configuration is selected by
independently sampling each hyper-parameter from
a prior distribution (typically uniform in the log-
domain, inside the interval of interest). For a discrete

Algorithm 1 : Greedy layer-wise hyper-
parameter optimization.

input K: number of best configurations to keep
at each level.
input NLEV ELS: number of levels of the deep
architecture
input LEV ELSETTINGS: list of hyper-
parameter settings to be considered for unsuper-
vised pre-training of a level
input SFTSETTINGS: list of hyper-parameter
settings to be considered for supervised fine-tuning

Initialize set of best configurations S = ∅
for L = 1 to NLEV ELS do
for C in LEV ELSETTINGS do
for H in (S or {∅}) do
* Pretrain level L using hyper-parameter
setting C for level L and the parameters ob-
tained with setting H for lower levels.
* Evaluate target task performance L using
this depth-L pre-trained architecture (e.g.
train a linear classifier on top of these layers
and estimate validation error).
* Push the pair (C ∪ H,L) into S if it is
among the K best performing of S.

end for
end for

end for
for C in SFTSETTINGS do
for H in S do
* Supervised fine-tuning of the pre-trained ar-
chitecture associated withH , using supervised
fine-tuning hyper-parameter setting C.
* Evaluate target task performance L of this
fine-tuned predictor (e.g. validation error).
* Push the pair (C∪H,L) into S if it is among
the K best performing of S.

end for
end for
output S the set of K best-performing models
with their settings and validation performance.
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hyper-parameter, a multinomial distribution can be
defined according to our prior beliefs on the likely
good values. At worse, i.e., with no prior preference
at all, this would be a uniform distribution across the
allowed values. In fact, we can use our prior knowl-
edge to make this prior distribution quite sophisti-
cated. For example, we can readily include knowl-
edge that some values of some hyper-parameters only
make sense in the context of other particular val-
ues of hyper-parameters. This is a practical consid-
eration for example when considering layer-specific
hyper-parameters when the number of layers itself is
a hyper-parameter.

The experiments performed (Bergstra and Bengio,
2012) show that random sampling can be many times
more efficient than grid search as soon as the number
of hyper-parameters goes beyond the 2 or 3 typically
seen with SVMs and vanilla neural networks. The
main reason why faster convergence is observed is
because it allows one to explore more values for each
hyper-parameter, whereas in grid search, the same
value of a hyper-parameter is repeated in exponen-
tially many configurations (of all the other hyper-
parameters). In particular, if only a small subset of
the hyper-parameters really matters, then this proce-
dure can be shown to be exponentially more efficient.
What we found is that for different datasets and ar-
chitectures, the subset of hyper-parameters that mat-
tered most was different, but it was often the case
that a few hyper-parameters made a big difference
(and the learning rate is always one of them!). When
marginalizing (by averaging or minimizing) the val-
idation performance to visualize the effect of one or
two hyper-parameters, we get a more noisy picture
using a random search compared to a grid search,
because of the random variations of the other hyper-
parameters but one with much more resolution, be-
cause so many more different values have been consid-
ered. Practically, one can plot the curves of best val-
idation error as the number of random trials28 is in-
creased (with mean and standard deviation, obtained
by considering, for each choice of number of trials, all
possible same-size subsets of trials), and this curve

28 each random trial corresponding to a training job with a
particular choice of hyper-parameter values

tells us that we are approaching a plateau, i.e., it tells
us whether it is worth it or not to continue launching
jobs, i.e., we can perform a kind of early stopping in
the outer optimization over hyper-parameters. Note
that one should distinguish the curve of the “best
trial in first N trials” with the curve of the mean (and
standard deviation) of the “best in a subset of size
N”. The latter is a better statistical representative of
the improvements we should expect if we increase the
number of trials. Even if the former has a plateau,
the latter may still be on the increase, pointing for the
need to more hyper-parameter configuration samples,
i.e., more trials (Bergstra and Bengio, 2012). Com-
paring these curves with the equivalent obtained from
grid search we see faster convergence with random
search. On the other hand, note that one advan-
tage of grid search compared to random sampling is
that the qualitative analysis of results is easier be-
cause one can consider variations of a single hyper-
parameter with all the other hyper-parameters being
fixed. It may remain a valid option to do a small
grid search around the best solutions found by ran-
dom search, considering only the hyper-parameters
that were found to matter or which concern a scien-
tific question of interest29.
Random search maintains the advantage of easy

parallelization provided by grid search and improves
on it. Indeed, a practical advantage of random search
compared to grid search is that if one of the jobs fails
then there is no need to re-launch that job. It also
means that if one has launched 100 random search
jobs, and finds that the convergence curve still has an
interesting slope, one can launch another 50 or 100
without wasting the first 100. It is not that simple to
combine the results of two grid searches because they
are not always compatible (i.e., one is not a subset of
the other).
Finally, although random search is a useful ad-

dition to the toolbox of the practitioner, semi-
automatic exploration is still helpful and one will
often iterate between launching a new volley of
jobs and analysis of the results obtained with

29 This is often the case in machine learning research, e.g.,
does depth of architecture matter? then we need to control ac-
curately for the effect of depth, with all other hyper-parameters
optimized for each value of depth.
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the previous volley in order to guide model de-
sign and research. What we need is more, and
more efficient, automation of hyper-parameter op-
timization. There are some interesting steps in
this direction (Hutter, 2009; Bergstra et al., 2011;
Hutter et al., 2011; Srinivasan and Ramakrishnan,
2011) but much more needs to done.

4 Debugging and Analysis

4.1 Gradient Checking and Con-

trolled Overfitting

A very useful debugging step consists in verifying
that the implementation of the gradient ∂L

∂θ
is com-

patible with the computation of L as a function of
θ. If the analytically computed gradient does not
match the one obtained by a finite difference approx-
imation, this signals that a bug is probably present
somewhere. First of all, looking at for which i one
gets important relative change between ∂L

∂θi
and its

finite difference approximation, we can get hints as
to where the problem may be. An error in sign is
particularly troubling, of course. A good next step is
then to verify in the same way intermediate gradients
∂L
∂a

with a some quantities that depend on the faulty
θ, such as intervening neuron activations.
As many researchers know, the gradient can be

approximated by a finite difference approximation
obtained from the first-order Taylor expansion of a
scalar function f with respect to a scalar argument
x:

∂f(x)

∂x
=

f(x+ ε)− f(x)

ε
+ o(ε)

But a less known fact is that a second order approx-
imation can be achieved by considering the following
alternative formula:

∂f(x)

∂x
≈

f(x+ ε)− f(x− ε)

2ε
+ o(ε2).

The second order terms of the Taylor expansion of
f(x+ ε) and f(x− ε) cancel each other because they
are even, leaving only 3rd or higher order terms,
i.e., o(ε2) error after dividing the difference by ε.
Hence this formula is twice more expensive (not a

big deal while debugging) but provides quadratically
more precision.

Note that because of finite precision in the com-
putation, there will be a difference between the an-
alytic (even correct) and finite difference gradient.
Contrary to naive expectations, the relative differ-
ence may grow if we choose an ε that is too small,
i.e., the error should first decrease as ε is decreased,
and then may worsen when numerical precision kicks
in, due to non-linearities. We have often used a value
of ε = 10−4 in neural networks, a value that is suffi-
ciently small to detect most bugs.

Once the gradient is known to be well computed,
another sanity check is that gradient descent (or any
other gradient-based optimization) should be able
to overfit on a small training set30. In particular,
to factor out effects of SGD hyper-parameters, a
good sanity check for the code (and the other hyper-
parameters) is to verify that one can overfit on a small
training set using a powerful second order method
such as L-BFGS. For any optimizer, though, as the
number of examples is increased, the degradation of
training error should be gradual while validation er-
ror should improve. And one typically sees the advan-
tages of SGD over batch second-order methods like
L-BFGS increase as the training set size increases.
The break-even point may depend on the task, paral-
lelization (multi-core or GPU, see Sec.5 below), and
architecture (number of computations compared to
number of parameters, per example).

Of course, the real goal of learning is to achieve
good generalization error, and the latter can be es-
timated by measuring performance on an indepen-
dent test set. When test error is considered too
high, the first question to ask is whether it is be-
cause of a difficulty in optimizing the training cri-
terion or because of overfitting. Comparing train-
ing error and test error (and how they change as
we change hyper-parameters that influence capacity,

30 In principle, bad local minima could prevent that, but in
the overfitting regime, e.g., with more hidden units than exam-
ples, the global minimum of the training error can generally be
reached almost surely from random initialization, presumably
because the training criterion becomes convex in the parame-
ters that suffice to get the training error to zero (Bengio et al.,
2006a), i.e., the output weights of the neural network.
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such as the number of training iterations) helps to
answer that question. Depending on the answer, of
course, the appropriate ways to improve test error
are different. Optimization difficulties can be fixed
by looking for bugs in the training code, inappropri-
ate values of optimization hyper-parameters, or sim-
ply insufficient capacity (e.g. not enough degrees of
freedom, hidden units, embedding sizes, etc.). Over-
fitting difficulties can be addressed by collecting more
training data, introducing more or better regular-
ization terms, multi-task training, unsupervised pre-
training, unsupervised term in the training criterion,
or considering different function families (or neural
network architectures). In a multi-layer neural net-
work, both problems can be simultaneously present.
For example, as discussed in Bengio et al. (2007);
Bengio (2009), it is possible to have zero training er-
ror with a large top-level hidden layer that allows the
output layer to overfit, while the lower layer are not
doing a good job of extracting useful features because
they were not properly optimized.

Unless using a framework such as Theano which
automatically handles the efficient allocation of
buffers for intermediate results, it is important to
pay attention to such buffers in the design of the
code. The first objective is to avoid memory alloca-
tion in the middle of the training loop, i.e., all mem-
ory buffers should be allocated once and for all. Care-
less reuse of the same memory buffers for different
uses can however lead to bugs, which can be checked,
in the debugging phase, by initializing buffers to the
NaN (Not-A-Number) value, which propagates into
downstream computation (making it easy to detect
that uninitialized values were used)31.

4.2 Visualizations and Statistics

The most basic statistics that should be measured
during training are error statistics. The average loss
on the training set and the validation set and their
evolution during training are very useful to monitor
progress and differentiate overfitting from poor op-
timization. To make comparisons easier, it may be

31 Personal communication from David Warde-Farley, who
learned this trick from Sam Roweis.

useful to compare neural networks during training in
terms of their “age” (number of updates made times
mini-batch size B, i.e., number of examples visited)
rather than in terms of number of epochs (which is
very sensitive to the training set size).
When using unsupervised training to learn the first

few layers of a deep architecture, a very common de-
bugging and analysis tool is the visualization of fil-
ters, i.e., of the weight vectors associated with in-
dividual hidden units. This is simplest in the case
of the first layer and where the inputs are images
(or image patches), time-series, or spectrograms (all
of which are visually interpretable). Several recipes
have been proposed to extend this idea to visualize
the preferred input of hidden units in layers that
follow the first one (Lee et al., 2008; Erhan et al.,
2010a). In the case of the first layer, since one of-
ten obtains Gabor filters, a parametric fit of these
filters to the weight vector can be done so as to vi-
sualize the distribution of orientations, positions and
scales of the learned filters. An interesting special
case of visualizing first-layer weights is the visual-
ization of word embeddings (see Section 5.3 below)
using a dimensionality reduction technique such as
t-SNE (van der Maaten and Hinton, 2008).
An extension of the idea of visualizing filters (which

can apply to non-linear or deeper features) is that of
visualizing local (arount the given test point) lead-
ing tangent vectors, i.e., the main directions in input
space to which the representation (at a given layer)
is most sensitive to (Rifai et al., 2011b).
In the case where the inputs are not images or eas-

ily visualizable, or to get a sense of the weight values
in different hidden units, Hinton diagrams (Hinton,
1989) are also very useful, using small squares whose
color (black or white) indicates a weight’s sign and
whose area represents its magnitude.
Another way to visualize what has been learned

by an unsupervised (or joint label-input) model is
to look at samples from the model. Sampling pro-
cedures have been defined at the outset for RBMs,
Deep Belief Nets, and Deep Boltzmann Machines,
for example based on Gibbs sampling. When weights
become larger, mixing between modes can become
very slow with Gibbs sampling. An interesting alter-
native is rates-FPCD (Tieleman and Hinton, 2009;
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Breuleux et al., 2011) which appears to be more ro-
bust to this problem and generally mixes faster, but
at the cost of losing theoretical guarantees.
In the case of auto-encoder variants, it was not

clear until recently whether they were really captur-
ing the underlying density (since they are not opti-
mized with respect to the maximum likelihood prin-
ciple or an approximation of it). It was therefore
even less clear if there existed appropriate sampling
algorithms for auto-encoders, but a recent proposal
for sampling from contractive auto-encoders appears
to be working very well (Rifai et al., 2012), based on
arguments about the geometric interpretation of the
first derivative of the encoder (Bengio et al., 2012),
showing that denoising and contractive auto-encoders
capture local moments (first and second) of the train-
ing density.
To get a sense of what individual hidden units rep-

resent, it has also been proposed to vary only one
unit while keeping the others fixed, e.g., to the value
obtained by finding the hidden units representation
associated with a particular input example.
Another interesting technique is the visual-

ization of the learning trajectory in function
space (Erhan et al., 2010b). The idea is to asso-
ciate the function (as opposed to simply the pa-
rameters) computed by a neural network with a
low-dimensional (2-D or 3-D) representation, e.g.,
with the t-SNE (van der Maaten and Hinton, 2008)
or Isomap (Tenenbaum et al., 2000) algorithms, and
then plot the evolution of this function during train-
ing, or the population of such trajectories for different
initializations. This provides visualization of effec-
tive local minima32 and shows that no two different
random initializations ended up in the same effective
local minimum.
Finally, another useful type of visualization is to

display statistics (e.g., histogram, mean and stan-
dard deviation) of activations (inputs and outputs
of the non-linearities at each layer), activation gradi-
ents, parameters and parameter gradients, by groups
(e.g. different layers, biases vs weights) and across
training iterations. See Glorot and Bengio (2010)

32 It is difficult to know for sure if it is a true local minima
or if it appears like one because the optimization algorithm is
stuck.

for a practical example. A particularly interesting
quantity to monitor is the discriminative ability of
the representations learnt at each layer, as discussed
in (Montavon et al., 2012), and ultimately leading to
an analysis of the disentangled factors captured by
the different layers as we consider deeper architec-
tures.

5 Other Recommendations

5.1 Multi-core machines, BLAS and

GPUs

Matrix operations are the most time-consuming in
efficient implementations of many machine learning
algorithms and this is particularly true of neural
networks and deep architectures. The basic opera-
tions are matrix-vector products (forward propaga-
tion and back-propagation) and vector times vector
outer products (resulting in a matrix of weight gra-
dients). Matrix-matrix multiplications can be done
substantially faster than the equivalent sequence of
matrix-vector products for two reasons: by smart
caching mechanisms such as implemented in the
BLAS library (which is called from many higher-level
environments such as python’s numpy and Theano,
Matlab, Torch or Lush), and thanks to parallelism.
Appropriate versions of BLAS can take advantage
of multi-core machines to distribute these computa-
tions on multi-core machines. The speed-up is how-
ever generally a fraction of the total speedup one can
hope for (e.g. 4× on a 4-core machine), because of
communication overheads and because not all com-
putation is parallelized. Parallelism becomes more
efficient when the sizes of these matrices is increased,
which is why mini-batch updates can be computa-
tionally advantageous, and more so when more cores
are present.

The extreme multi-core machines are the GPUs
(Graphics Processing Units), with hundreds of cores.
Unfortunately, they also come with constraints and
specialized compilers which make it more difficult to
fully take advantage of their potential. On 512-core
machines, we are routinely able to get speed-ups of
4× to 40× for large neural networks. To make the
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use of GPUs practical, it really helps to use existing
libraries that efficiently implement computations on
GPUs. See Bergstra et al. (2010) for a comparative
study of the Theano library (which compiles numpy-
like code for GPUs). One practical issue is that only
the GPU-compiled operations will typically be done
on the GPU, and that transfers between the GPU
and CPU considerably slow things down. It is im-
portant to use a profiler to find out what is done
on the GPU and how efficient these operations are
in order to quickly invest one’s time where needed
to make an implementation GPU-efficient and keep
most operations on the GPU card.

5.2 Sparse High-Dimensional Inputs

Sparse high-dimensional inputs can be efficiently han-
dled by traditional supervised neural networks by us-
ing a sparse matrix multiplication. Typically, the in-
put is a sparse vector while the weights are in a dense
matrix, and one should use an efficient implementa-
tion made for just this case in order to optimally take
advantage of sparsity. There is still going to be an
overhead on the order of 2× or more (on the multiply-
add operations, not the others) compared to a dense
implementation of the matrix-vector product.
For many unsupervised learning algorithms there is

unfortunately a difficulty. The computation for these
learning algorithms usually involves some kind of re-
construction of the input (like for all auto-encoder
variants, but also for RBMs and sparse coding vari-
ants), as if the inputs were in the output space of
the learner. Two exceptions to this problem are
semi-supervised embedding (Weston et al., 2008) and
Slow Feature Analysis (Wiskott and Sejnowski, 2002;
Berkes and Wiskott, 2002). The former pulls the rep-
resentation of nearby examples near each other and
pushes dissimilar points apart, while also tuning the
representation for a supervised learning task. The
latter maximizes the learned features’ variance while
minimizing their covariance and maximizing their
temporal auto-correlation.
For algorithms that do need a form of input re-

construction, an efficient approach based on sam-
pled reconstruction (Dauphin et al., 2011) has been
proposed, successfully implemented and evaluated

for the case of auto-encoders and denoising auto-
encoders. The first idea is that on each example (or
mini-batch), one samples a subset of the elements
of the reconstruction vector, along with the associ-
ated reconstruction loss. One only needs to com-
pute the reconstruction and the loss associated with
these sampled elements (or features), as well as the
associated back-propagation operations into hidden
units and reconstruction weights. That alone would
multiplicatively reduce the computational cost by the
amount of sparsity but make the gradient much more
noisy and possibly biased as well, if the sampling dis-
tribution was chosen not uniform. To reduce the vari-
ance of that estimator, the idea is to guess for which
features the reconstruction loss will be larger and to
sample with higher probability these features (and
their loss). In particular, the authors always sample
the features with a non-zero in the input (or the cor-
rupted input, in the denoising case), and uniformly
sample an equal number of those with a zero in the
input and corrupted input. To make the estimator
unbiased now requires introducing a weight on the
reconstruction loss associated with each sampled fea-
ture, inversely proportional to the probability of sam-
pling it, i.e., this is an importance sampling scheme.
The experiments show that the speed-up increases
linearly with the amount of sparsity while the aver-
age loss is optimized as well as in the deterministic
full-computation case.

5.3 Symbolic Variables, Embeddings,

Multi-Task Learning and Multi-

Relational Learning

Parameter sharing (Lang and Hinton, 1988; LeCun,
1989; Lang and Hinton, 1988; Caruana, 1993; Baxter,
1995, 1997) is an old neural network technique for in-
creasing statistical power: if a parameter is used in N
times more contexts (different tasks, different parts of
the input, etc.) then it may be as if we had N times
more training examples for tuning its value. More
examples to estimate a parameter reduces its vari-
ance (with respect to sampling of training examples),
which is directly influencing generalization error: for
example the generalization mean squared error can
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be decomposed as the sum of a bias term and a vari-
ance term (Geman et al., 1992). The reuse idea was
first exploited by applying the same parameter to dif-
ferent parts of the input, as in convolutional neu-
ral networks (Lang and Hinton, 1988; LeCun, 1989).
Reuse was also exploited by sharing the lower lay-
ers of a network (and the representation of the input
that they capture) across multiple tasks associated
with different outputs of the network (Caruana, 1993;
Baxter, 1995, 1997). This idea is also one of the key
motivations behind Deep Learning (Bengio, 2009) be-
cause one can think of the intermediate features com-
puted in higher (deeper) layers as different tasks that
can share the sub-features computed in lower layers
(nearer the input). This very basic notion of reuse
is key to improving generalization in many settings,
guiding the design of neural network architectures in
practical applications as well.

An interesting special case of these ideas is in the
context of learning with symbolic data. If some in-
put variables are symbolic, taking value in a finite
alphabet, they can be represented as neural net-
work inputs by a one-hot subvector of the input vec-
tor (with a 0 everywhere except at the position as-
sociated with the particular symbol). Now, some-
times different input variables refer to different in-
stances of the same type of symbol. A patent ex-
ample is with neural language models (Bengio et al.,
2003; Bengio, 2008), where the input is a sequence of
words. In these models, the same input layer weights
are reused for words at different positions in the input
sequence (as in convolutional networks). The prod-
uct of a one-hot sub-vector with this shared weight
matrix is a generally dense vector, and this asso-
ciates each symbol in the alphabet with a point in
a vector space33, which we call its embedding. The
idea of vector space representations for words and
symbols is older (Deerwester et al., 1990) and is a
particular case of the notion of distributed represen-
tation (Hinton, 1986, 1989) central to the connec-
tionist approaches. Learned embeddings of symbols
(or other objects) can be conveniently visualized us-
ing a dimensionality reduction algorithm such as t-

33 the result of the matrix multiplication, which equals one
of the columns of the matrix

SNE (van der Maaten and Hinton, 2008).
In addition to sharing the embedding parame-

ters across positions of words in an input sentence,
Collobert et al. (2011a) share them across natural
language processing tasks such as Part-Of-Speech
tagging, chunking and semantic role labeling. Param-
eter sharing is a key idea behind convolutional nets,
recurrent neural networks and dynamic Bayes nets, in
which the same parameters are used for different tem-
poral or spatial slices of the data. This idea has been
generalized from sequences and 2-D images to arbi-
trary graphs with recursive neural networks or recur-
sive graphical models (Pollack, 1990; Frasconi et al.,
1998; Bottou, 2011; Socher et al., 2011), Markov
Logic Networks (Richardson and Domingos, 2006)
and relational learning (Getoor and Taskar, 2006).
A relational database can be seen as a set of ob-
jects (or typed values) and relations between them,
of the form (object1, relation-type, object2). The
same global set of parameters can be shared to char-
acterize such relations, across relations (which can be
seen as tasks) and objects. Object-specific parame-
ters are the parameters specifying the embedding of
a particular discrete object. One can think of the el-
ements of each embedding vector as implicit learned
attributes. Different tasks may demand different at-
tributes, so that objects which share some underly-
ing characteristics and behavior should end up hav-
ing similar values of some of their attributes. For
example, words appearing in semantically and syn-
tactically similar contexts end up getting a very close
embedding (Collobert et al., 2011a). If the same at-
tributes can be useful for several tasks, then statisti-
cal power is gained through parameter sharing, and
transfer of information between tasks can happen,
making the data of some task informative for gener-
alizing properly on another task.
The idea proposed in Bordes et al. (2011, 2012) is

to learn an energy function that is lower for posi-
tive (valid) relations present in the training set, and
parametrized in two parts: on the one hand the sym-
bol embeddings and on the other hand the rest of
the neural network that maps them to a scalar en-
ergy. In addition, by considering relation types them-
selves as particular symbolic objects, the model can
reason about relations themselves and have relations
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between relation types. For example, ‘To be’ can act
as a relation type (in subject-attribute relations) but
in the statement “ ‘To be’ is a verb” it appears both
as a relation type and as an object of the relation.

Such multi-relational learning opens the door to
the application of neural networks outside of their
traditional applications, which was based on a single
homogeneous source of data, often seen as a matrix
with one row per example and one column (or group
of columns) per random variable. Instead, one often
has multiple heterogeneous sources of data (typically
providing examples seen as a tuple of values), each in-
volving different random variables. So long as these
different sources share some variables, then the above
multi-relational multi-task learning approaches can
be applied. Each variable can be associated with its
embedding function (that maps the value of a vari-
able to a generic representation space that is valid
across tasks and data sources). This framework can
be applied not only to symbolic data but to mixed
symbolic/numeric data if the mapping from object
to embedding is generalized from a table look-up to
a parametrized function (the simplest being a linear
mapping) from its raw attributes (e.g., image fea-
tures) to its embedding. This has been exploited
successfully to design image search systems in which
images and queries are mapped to the same semantic
space (Weston et al., 2011).

6 Open Questions

6.1 On the Added Difficulty of Train-

ing Deeper Architectures

There are experimental results which provide some
evidence that, at least in some circumstances, deeper
neural networks are more difficult to train than
shallow ones, in the sense that there is a greater
chance of missing out on better minima when start-
ing from random initialization. This is borne out
by all the experiments where we find that some
initialization scheme can drastically improve per-
formance. In the Deep Learning literature this
has been shown with the use of unsupervised pre-
training (supervised or not), both applied to super-

vised tasks — training a neural network for clas-
sification (Hinton et al., 2006; Bengio et al., 2007;
Ranzato et al., 2007) — and unsupervised tasks —
training a Deep Boltzmann Machine to model the
data distribution (Salakhutdinov and Hinton, 2009).
The learning trajectories visualizations

of Erhan et al. (2010b) have shown that even
when starting from nearby configurations in function
space, different initializations seem to always fall in
a different effective local minimum. Furthermore,
the same study showed that the minima found when
using unsupervised pre-training were far in function
space from those found from random initialization,
in addition to giving better generalization error.
Both of these findings highlight the importance of
initialization, hence of local minima effects, in deep
networks. Finally, it has been shown that these
effects were both increased when considering deeper
architectures (Erhan et al., 2010b).
There are also results showing that specific ways

of setting the initial distribution and ordering of
examples (“curriculum learning”) can yield bet-
ter solutions (Elman, 1993; Bengio et al., 2009;
Krueger and Dayan, 2009). This also suggest that
very particular ways of initializing parameters, very
different from uniformly sampled, can have a strong
impact on the solutions found by gradient descent.
The hypothesis proposed in (Bengio et al., 2009) is
that curriculum learning can act similarly to a con-
tinuation method, i.e., starting from an easier opti-
mization task (e.g. convex) and tracking the local
minimum as the learning task is gradually made more
difficult and closer to the real task of interest.
Why would training deeper networks be more dif-

ficult? This is clearly still an open question. A
plausible partial answer is that deeper networks are
also more non-linear (since each layer composes more
non-linearity on top of the previous ones), making
gradient-based methods less efficient. It may also be
that the number and structure of local minima both
change qualitatively as we increase depth. Theoreti-
cal arguments support a potentially exponential gain
in expressive power of deeper architectures (Bengio,
2009; Bengio and Delalleau, 2011) and it would be
plausible that with this added expressive power com-
ing from the combinatorics of composed reuse of sub-
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functions could come a corresponding increase in the
number (and possibly quality) of local minima. But
the best ones could then also be more difficult to find.
On the practical side, several experimental results

point to factors that may help training deep architec-
tures:

• A local training signal. What many success-
ful procedures for training deep networks have
in common is that they involve a local training
signal that helps each layer decide what to do
without requiring the back-propagation of gradi-
ents through many non-linearities. This includes
of course the many variants of greedy layer-wise
pre-training but also the less well-known semi-
supervised embedding algorithm (Weston et al.,
2008).

• Initialization in the right range. Based
on the idea that both activations and gradients
should be able to flow well through a deep archi-
tecture without significant reduction in variance,
Glorot and Bengio (2010) proposed setting up
the initial weights to make the Jacobian of each
layer have singular values near 1 (or preserve
variance in both directions). In their experi-
ments this clearly helped greatly reducing the
gap between purely supervised and pre-trained
deep networks.

• Choice of non-linearities. In the same
study (Glorot and Bengio, 2010) and a follow-
up (Glorot et al., 2011a) it was shown that the
choice of hidden layer non-linearities interacted
with depth. In particular, without unsupervised
pre-training, a deep neural network with sig-
moids in the top hidden layer would get stuck
for a long time on a plateau and generally pro-
duce inferior results, due to the special role of
0 and of the initial gradients from the output
units. Symmetric non-linearities like the hy-
perbolic tangent did not suffer from that prob-
lem, while softer non-linearities (without ex-
ponential tails) such as the softsign function
s(a) = a

1+|a| worked even better. In Glorot et al.

(2011a) it was shown that an asymmetric but
hard-limiting non-linearity such as the rectifier

(s(a) = max(0, a), see also (Nair and Hinton,
2010)) actually worked very well (but should not
be used for output units), in spite of the prior be-
lief that the fact that when hidden units are sat-
urated, gradients would not flow well into lower
layers. In fact gradients flow very well, but on
selected paths, possibly making the credit as-
signment (which parameters should change to
handle the current error) sharper and the Hes-
sian condition number better. A recent heuris-
tic that is related to the difficulty of gradient
propagation through neural net non-linearities is
the idea of “centering” the non-linear operation
such that each hidden unit has zero average out-
put and zero average slope (Schraudolph, 1998;
Raiko et al., 2012).

6.2 Adaptive Learning Rates and

Second-Order Methods

To improve convergence and remove learning rates
from the list of hyper-parameters, many authors have
advocated exploring adaptive learning rate methods,
either for a global learning rate (Cho et al., 2011),
a layer-wise learning rate, a neuron-wise learning
rate, or a parameter-wise learning rate (Bordes et al.,
2009) (which then starts to look like a diagonal New-
ton method). LeCun (1987); LeCun et al. (1998a)
advocate the use of a second-order diagonal New-
ton (always positive) approximation, with one learn-
ing rate per parameter (associated with the approx-
imated inverse second derivative of the loss with re-
spect to the parameter). Hinton (2010) proposes
scaling learning rates so that the average weight up-
date is on the order of 1/1000th of the weight mag-
nitude. LeCun et al. (1998a) also propose a simple
power method in order to estimate the largest eigen-
value of the Hessian (which would be the optimal
learning rate). An interesting alternative to variants
of Newton’s method are variants of the natural gradi-
ent method (Amari, 1998), but like the basic Newton
method it is computationally too expensive, requir-
ing operations on a too large square matrix (num-
ber of parameters by number of parameters). Diag-
onal and low-rank online approximations of natural
gradient (Le Roux et al., 2008; Le Roux et al., 2011)
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have been proposed and shown to speed-up train-
ing in some contexts. Several adaptive learning rate
procedures have been proposed recently and merit
more attention and evaluations in the neural network
context, such as adagrad (Duchi et al., 2011) and
the adaptive learning rate method from Schaul et al.
(2012) which claims to remove completely the need
for a learning rate hyper-parameter.
Whereas stochastic gradient descent converges

very quickly initially it is generally slower than
second-order methods for the final convergence, and
this may be important in some applications. As a
consequence, batch training algorithms (performing
only one update after seeing the whole training set)
such as the Conjugate Gradient method (a second
order method) have dominated stochastic gradient
descent for not too large datasets (e.g. less than
thousands or tens of thousands of examples). Fur-
thermore, it has recently been proposed and success-
fully applied to use second-order methods over large
mini-batches (Le et al., 2011; Martens, 2010). The
idea is to do just a few iterations of the second-order
methods on each mini-batch and then move on to
the next mini-batch, starting from the best previous
point found. A useful twist is to start training with
one or more epoch of SGD, since SGD remains the
fastest optimizer early on in training.
At this point in time however, although the second-

order and natural gradient methods are appealing
conceptually, have demonstrably helped in the stud-
ied cases and may in the end prove to be very impor-
tant, they have not yet become a standard for neural
networks optimization and need to be validated and
maybe improved by other researchers, before displac-
ing simple (mini-batch) stochastic gradient descent
variants.

6.3 Conclusion

In spite of decades of experimental and theoretical
work on artificial neural networks, and with all the
impressive progress made since the first edition of
this book, in particular in the area of Deep Learning,
there is still much to be done to better train neural
networks and better understand the underlying issues
that can make the training task difficult. As stated in

the introduction, the wisdom distilled here should be
taken as a guideline, to be tried and challenged, not
as a practice set in stone. The practice summarized
here, coupled with the increase in available comput-
ing power, now allows researchers to train neural net-
works on a scale that is far beyond what was possible
at the time of the first edition of this book, helping
to move us closer to artificial intelligence.
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