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Abstract

Training Deep Neural Networks is complicated by the fact
that the distribution of each layer’s inputs changes during
training, as the parameters of the previous layers change.
This slows down the training by requiring lower learning
rates and careful parameter initialization, and makes it no-
toriously hard to train models with saturating nonlineari-
ties. We refer to this phenomenon asinternal covariate
shift, and address the problem by normalizing layer in-
puts. Our method draws its strength from making normal-
ization a part of the model architecture and performing the
normalizationfor each training mini-batch. Batch Nor-
malization allows us to use much higher learning rates and
be less careful about initialization. It also acts as a regu-
larizer, in some cases eliminating the need for Dropout.
Applied to a state-of-the-art image classification model,
Batch Normalization achieves the same accuracy with 14
times fewer training steps, and beats the original model
by a significant margin. Using an ensemble of batch-
normalized networks, we improve upon the best published
result on ImageNet classification: reaching 4.9% top-5
validation error (and 4.8% test error), exceeding the ac-
curacy of human raters.

1 Introduction

Deep learning has dramatically advanced the state of the
art in vision, speech, and many other areas. Stochas-
tic gradient descent (SGD) has proved to be an effec-
tive way of training deep networks, and SGD variants
such as momentum (Sutskever et al., 2013) and Adagrad
(Duchi et al., 2011) have been used to achieve state of the
art performance. SGD optimizes the parametersΘ of the
network, so as to minimize the loss

Θ = argmin
Θ

1

N

N∑

i=1

ℓ(xi,Θ)

wherex1...N is the training data set. With SGD, the train-
ing proceeds in steps, and at each step we consider amini-
batchx1...m of sizem. The mini-batch is used to approx-
imate the gradient of the loss function with respect to the
parameters, by computing

1

m

∂ℓ(xi,Θ)

∂Θ
.

Using mini-batches of examples, as opposed to one exam-
ple at a time, is helpful in several ways. First, the gradient
of the loss over a mini-batch is an estimate of the gradient
over the training set, whose quality improves as the batch
size increases. Second, computation over a batch can be
much more efficient thanm computations for individual
examples, due to the parallelism afforded by the modern
computing platforms.

While stochastic gradient is simple and effective, it
requires careful tuning of the model hyper-parameters,
specifically the learning rate used in optimization, as well
as the initial values for the model parameters. The train-
ing is complicated by the fact that the inputs to each layer
are affected by the parameters of all preceding layers – so
that small changes to the network parameters amplify as
the network becomes deeper.

The change in the distributions of layers’ inputs
presents a problem because the layers need to continu-
ously adapt to the new distribution. When the input dis-
tribution to a learning system changes, it is said to experi-
encecovariate shift(Shimodaira, 2000). This is typically
handled via domain adaptation (Jiang, 2008). However,
the notion of covariate shift can be extended beyond the
learning system as a whole, to apply to its parts, such as a
sub-network or a layer. Consider a network computing

ℓ = F2(F1(u,Θ1),Θ2)

whereF1 andF2 are arbitrary transformations, and the
parametersΘ1,Θ2 are to be learned so as to minimize
the lossℓ. LearningΘ2 can be viewed as if the inputs
x = F1(u,Θ1) are fed into the sub-network

ℓ = F2(x,Θ2).

For example, a gradient descent step

Θ2 ← Θ2 −
α

m

m∑

i=1

∂F2(xi,Θ2)

∂Θ2

(for batch sizem and learning rateα) is exactly equivalent
to that for a stand-alone networkF2 with inputx. There-
fore, the input distribution properties that make training
more efficient – such as having the same distribution be-
tween the training and test data – apply to training the
sub-network as well. As such it is advantageous for the
distribution ofx to remain fixed over time. Then,Θ2 does
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not have to readjust to compensate for the change in the
distribution ofx.

Fixed distribution of inputs to a sub-network would
have positive consequences for the layersoutsidethe sub-
network, as well. Consider a layer with a sigmoid activa-
tion functionz = g(Wu + b) whereu is the layer input,
the weight matrixW and bias vectorb are the layer pa-
rameters to be learned, andg(x) = 1

1+exp(−x) . As |x|
increases,g′(x) tends to zero. This means that for all di-
mensions ofx = Wu+b except those with small absolute
values, the gradient flowing down tou will vanish and the
model will train slowly. However, sincex is affected by
W, b and the parameters of all the layers below, changes
to those parameters during training will likely move many
dimensions ofx into the saturated regime of the nonlin-
earity and slow down the convergence. This effect is
amplified as the network depth increases. In practice,
the saturation problem and the resulting vanishing gradi-
ents are usually addressed by using Rectified Linear Units
(Nair & Hinton, 2010)ReLU(x) = max(x, 0), careful
initialization (Bengio & Glorot, 2010; Saxe et al., 2013),
and small learning rates. If, however, we could ensure
that the distribution of nonlinearity inputs remains more
stable as the network trains, then the optimizer would be
less likely to get stuck in the saturated regime, and the
training would accelerate.

We refer to the change in the distributions of internal
nodes of a deep network, in the course of training, asIn-
ternal Covariate Shift. Eliminating it offers a promise of
faster training. We propose a new mechanism, which we
call Batch Normalization, that takes a step towards re-
ducing internal covariate shift, and in doing so dramati-
cally accelerates the training of deep neural nets. It ac-
complishes this via a normalization step that fixes the
means and variances of layer inputs. Batch Normalization
also has a beneficial effect on the gradient flow through
the network, by reducing the dependence of gradients
on the scale of the parameters or of their initial values.
This allows us to use much higher learning rates with-
out the risk of divergence. Furthermore, batch normal-
ization regularizes the model and reduces the need for
Dropout (Srivastava et al., 2014). Finally, Batch Normal-
ization makes it possible to use saturating nonlinearities
by preventing the network from getting stuck in the satu-
rated modes.

In Sec. 4.2, we apply Batch Normalization to the best-
performing ImageNet classification network, and show
that we can match its performance using only 7% of the
training steps, and can further exceed its accuracy by a
substantial margin. Using an ensemble of such networks
trained with Batch Normalization, we achieve the top-5
error rate that improves upon the best known results on
ImageNet classification.

2 Towards Reducing Internal
Covariate Shift

We defineInternal Covariate Shiftas the change in the
distribution of network activations due to the change in
network parameters during training. To improve the train-
ing, we seek to reduce the internal covariate shift. By
fixing the distribution of the layer inputsx as the training
progresses, we expect to improve the training speed. It has
been long known (LeCun et al., 1998b; Wiesler & Ney,
2011) that the network training converges faster if its in-
puts are whitened – i.e., linearly transformed to have zero
means and unit variances, and decorrelated. As each layer
observes the inputs produced by the layers below, it would
be advantageous to achieve the same whitening of the in-
puts of each layer. By whitening the inputs to each layer,
we would take a step towards achieving the fixed distri-
butions of inputs that would remove the ill effects of the
internal covariate shift.

We could consider whitening activations at every train-
ing step or at some interval, either by modifying the
network directly or by changing the parameters of the
optimization algorithm to depend on the network ac-
tivation values (Wiesler et al., 2014; Raiko et al., 2012;
Povey et al., 2014; Desjardins & Kavukcuoglu). How-
ever, if these modifications are interspersed with the op-
timization steps, then the gradient descent step may at-
tempt to update the parameters in a way that requires
the normalization to be updated, which reduces the ef-
fect of the gradient step. For example, consider a layer
with the inputu that adds the learned biasb, and normal-
izes the result by subtracting the mean of the activation
computed over the training data:̂x = x − E[x] where
x = u + b, X = {x1...N} is the set of values ofx over
the training set, and E[x] = 1

N

∑N
i=1 xi. If a gradient

descent step ignores the dependence of E[x] on b, then it
will updateb ← b + ∆b, where∆b ∝ −∂ℓ/∂x̂. Then
u + (b + ∆b) − E[u + (b + ∆b)] = u + b − E[u + b].
Thus, the combination of the update tob and subsequent
change in normalization led to no change in the output
of the layer nor, consequently, the loss. As the training
continues,b will grow indefinitely while the loss remains
fixed. This problem can get worse if the normalization not
only centers but also scales the activations. We have ob-
served this empirically in initial experiments, where the
model blows up when the normalization parameters are
computed outside the gradient descent step.

The issue with the above approach is that the gradient
descent optimization does not take into account the fact
that the normalization takes place. To address this issue,
we would like to ensure that, for any parameter values,
the networkalwaysproduces activations with the desired
distribution. Doing so would allow the gradient of the
loss with respect to the model parameters to account for
the normalization, and for its dependence on the model
parametersΘ. Let againx be a layer input, treated as a
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vector, andX be the set of these inputs over the training
data set. The normalization can then be written as a trans-
formation

x̂ = Norm(x,X )
which depends not only on the given training examplex
but on all examplesX – each of which depends onΘ if
x is generated by another layer. For backpropagation, we
would need to compute the Jacobians

∂Norm(x,X )
∂x

and
∂Norm(x,X )

∂X ;

ignoring the latter term would lead to the explosion de-
scribed above. Within this framework, whitening the layer
inputs is expensive, as it requires computing the covari-
ance matrix Cov[x] = Ex∈X [xxT ] − E[x]E[x]T and its
inverse square root, to produce the whitened activations
Cov[x]−1/2(x − E[x]), as well as the derivatives of these
transforms for backpropagation. This motivates us to seek
an alternative that performs input normalization in a way
that is differentiable and does not require the analysis of
the entire training set after every parameter update.

Some of the previous approaches (e.g.
(Lyu & Simoncelli, 2008)) use statistics computed
over a single training example, or, in the case of image
networks, over different feature maps at a given location.
However, this changes the representation ability of a
network by discarding the absolute scale of activations.
We want to a preserve the information in the network, by
normalizing the activations in a training example relative
to the statistics of the entire training data.

3 Normalization via Mini-Batch
Statistics

Since the full whitening of each layer’s inputs is costly
and not everywhere differentiable, we make two neces-
sary simplifications. The first is that instead of whitening
the features in layer inputs and outputs jointly, we will
normalize each scalar feature independently, by making it
have the mean of zero and the variance of 1. For a layer
with d-dimensional inputx = (x(1) . . . x(d)), we will nor-
malize each dimension

x̂(k) =
x(k) − E[x(k)]√

Var[x(k)]

where the expectation and variance are computed over the
training data set. As shown in (LeCun et al., 1998b), such
normalization speeds up convergence, even when the fea-
tures are not decorrelated.

Note that simply normalizing each input of a layer may
change what the layer can represent. For instance, nor-
malizing the inputs of a sigmoid would constrain them to
the linear regime of the nonlinearity. To address this, we
make sure thatthe transformation inserted in the network
can represent the identity transform. To accomplish this,

we introduce, for each activationx(k), a pair of parameters
γ(k), β(k), which scale and shift the normalized value:

y(k) = γ(k)x̂(k) + β(k).

These parameters are learned along with the original
model parameters, and restore the representation power
of the network. Indeed, by settingγ(k) =

√
Var[x(k)] and

β(k) = E[x(k)], we could recover the original activations,
if that were the optimal thing to do.

In the batch setting where each training step is based on
the entire training set, we would use the whole set to nor-
malize activations. However, this is impractical when us-
ing stochastic optimization. Therefore, we make the sec-
ond simplification: since we use mini-batches in stochas-
tic gradient training,each mini-batch produces estimates
of the mean and varianceof each activation. This way, the
statistics used for normalization can fully participate in
the gradient backpropagation. Note that the use of mini-
batches is enabled by computation of per-dimension vari-
ances rather than joint covariances; in the joint case, reg-
ularization would be required since the mini-batch size is
likely to be smaller than the number of activations being
whitened, resulting in singular covariance matrices.

Consider a mini-batchB of sizem. Since the normal-
ization is applied to each activation independently, let us
focus on a particular activationx(k) and omitk for clarity.
We havem values of this activation in the mini-batch,

B = {x1...m}.

Let the normalized values bêx1...m, and their linear trans-
formations bey1...m. We refer to the transform

BNγ,β : x1...m → y1...m

as theBatch Normalizing Transform. We present the BN
Transform in Algorithm 1. In the algorithm,ǫ is a constant
added to the mini-batch variance for numerical stability.

Input: Values ofx over a mini-batch:B = {x1...m};
Parameters to be learned:γ, β

Output: {yi = BNγ,β(xi)}

µB ←
1

m

m∑

i=1

xi // mini-batch mean

σ2
B ←

1

m

m∑

i=1

(xi − µB)
2 // mini-batch variance

x̂i ←
xi − µB√
σ2
B
+ ǫ

// normalize

yi ← γx̂i + β ≡ BNγ,β(xi) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activationx over a mini-batch.

The BN transform can be added to a network to manip-
ulate any activation. In the notationy = BNγ,β(x), we
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indicate that the parametersγ andβ are to be learned,
but it should be noted that the BN transform does not
independently process the activation in each training ex-
ample. Rather, BNγ,β(x) depends both on the training
exampleand the other examples in the mini-batch. The
scaled and shifted valuesy are passed to other network
layers. The normalized activationŝx are internal to our
transformation, but their presence is crucial. The distri-
butions of values of anŷx has the expected value of0
and the variance of1, as long as the elements of each
mini-batch are sampled from the same distribution, and
if we neglectǫ. This can be seen by observing that∑m

i=1 x̂i = 0 and 1
m

∑m
i=1 x̂

2
i = 1, and taking expec-

tations. Each normalized activation̂x(k) can be viewed as
an input to a sub-network composed of the linear trans-
form y(k) = γ(k)x̂(k) + β(k), followed by the other pro-
cessing done by the original network. These sub-network
inputs all have fixed means and variances, and although
the joint distribution of these normalized̂x(k) can change
over the course of training, we expect that the introduc-
tion of normalized inputs accelerates the training of the
sub-network and, consequently, the network as a whole.

During training we need to backpropagate the gradi-
ent of lossℓ through this transformation, as well as com-
pute the gradients with respect to the parameters of the
BN transform. We use chain rule, as follows (before sim-
plification):

∂ℓ
∂x̂i

= ∂ℓ
∂yi
· γ

∂ℓ
∂σ2

B

=
∑m

i=1
∂ℓ
∂x̂i
· (xi − µB) · −1

2 (σ2
B
+ ǫ)−3/2

∂ℓ
∂µB

=

(∑m
i=1

∂ℓ
∂x̂i

· −1√
σ2
B
+ǫ

)
+ ∂ℓ

∂σ2
B

·
∑

m

i=1 −2(xi−µB)

m

∂ℓ
∂xi

= ∂ℓ
∂x̂i
· 1√

σ2
B
+ǫ

+ ∂ℓ
∂σ2

B

· 2(xi−µB)
m + ∂ℓ

∂µB
· 1
m

∂ℓ
∂γ =

∑m
i=1

∂ℓ
∂yi
· x̂i

∂ℓ
∂β =

∑m
i=1

∂ℓ
∂yi

Thus, BN transform is a differentiable transformation that
introduces normalized activations into the network. This
ensures that as the model is training, layers can continue
learning on input distributions that exhibit less internalco-
variate shift, thus accelerating the training. Furthermore,
the learned affine transform applied to these normalized
activations allows the BN transform to represent the iden-
tity transformation and preserves the network capacity.

3.1 Training and Inference with Batch-
Normalized Networks

To Batch-Normalizea network, we specify a subset of ac-
tivations and insert the BN transform for each of them,
according to Alg. 1. Any layer that previously received
x as the input, now receives BN(x). A model employing
Batch Normalization can be trained using batch gradient
descent, or Stochastic Gradient Descent with a mini-batch
sizem > 1, or with any of its variants such as Adagrad

(Duchi et al., 2011). The normalization of activations that
depends on the mini-batch allows efficient training, but is
neither necessary nor desirable during inference; we want
the output to depend only on the input, deterministically.
For this, once the network has been trained, we use the
normalization

x̂ =
x− E[x]√
Var[x] + ǫ

using the population, rather than mini-batch, statistics.
Neglectingǫ, these normalized activations have the same
mean 0 and variance 1 as during training. We use the un-
biased variance estimate Var[x] = m

m−1 · EB[σ
2
B
], where

the expectation is over training mini-batches of sizem and
σ2
B are their sample variances. Using moving averages in-

stead, we can track the accuracy of a model as it trains.
Since the means and variances are fixed during inference,
the normalization is simply a linear transform applied to
each activation. It may further be composed with the scal-
ing by γ and shift byβ, to yield a single linear transform
that replaces BN(x). Algorithm 2 summarizes the proce-
dure for training batch-normalized networks.

Input: NetworkN with trainable parametersΘ;
subset of activations{x(k)}Kk=1

Output: Batch-normalized network for inference,Ninf
BN

1: Ntr
BN ← N // Training BN network

2: for k = 1 . . .K do
3: Add transformationy(k) = BNγ(k),β(k)(x(k)) to

Ntr
BN (Alg. 1)

4: Modify each layer inNtr
BN with input x(k) to take

y(k) instead
5: end for
6: Train Ntr

BN to optimize the parametersΘ ∪
{γ(k), β(k)}Kk=1

7: Ninf
BN ← Ntr

BN // Inference BN network with frozen
// parameters

8: for k = 1 . . .K do
9: // For clarity,x ≡ x(k), γ ≡ γ(k), µB ≡ µ

(k)
B

, etc.
10: Process multiple training mini-batchesB, each of

sizem, and average over them:

E[x]← EB[µB]

Var[x]← m
m−1EB[σ

2
B]

11: In Ninf
BN, replace the transformy = BNγ,β(x) with

y = γ√
Var[x]+ǫ

· x+
(
β − γ E[x]√

Var[x]+ǫ

)

12: end for

Algorithm 2: Training a Batch-Normalized Network

3.2 Batch-Normalized Convolutional Net-
works

Batch Normalization can be applied to any set of acti-
vations in the network. Here, we focus on transforms
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that consist of an affine transformation followed by an
element-wise nonlinearity:

z = g(Wu + b)

whereW andb are learned parameters of the model, and
g(·) is the nonlinearity such as sigmoid or ReLU. This for-
mulation covers both fully-connected and convolutional
layers. We add the BN transform immediately before the
nonlinearity, by normalizingx = Wu+b. We could have
also normalized the layer inputsu, but sinceu is likely
the output of another nonlinearity, the shape of its distri-
bution is likely to change during training, and constraining
its first and second moments would not eliminate the co-
variate shift. In contrast,Wu + b is more likely to have
a symmetric, non-sparse distribution, that is “more Gaus-
sian” (Hyvärinen & Oja, 2000); normalizing it is likely to
produce activations with a stable distribution.

Note that, since we normalizeWu+b, the biasb can be
ignored since its effect will be canceled by the subsequent
mean subtraction (the role of the bias is subsumed byβ in
Alg. 1). Thus,z = g(Wu + b) is replaced with

z = g(BN(Wu))

where the BN transform is applied independently to each
dimension ofx = Wu, with a separate pair of learned
parametersγ(k), β(k) per dimension.

For convolutional layers, we additionally want the nor-
malization to obey the convolutional property – so that
different elements of the same feature map, at different
locations, are normalized in the same way. To achieve
this, we jointly normalize all the activations in a mini-
batch, over all locations. In Alg. 1, we letB be the set of
all values in a feature map across both the elements of a
mini-batch and spatial locations – so for a mini-batch of
sizem and feature maps of sizep × q, we use the effec-
tive mini-batch of sizem′ = |B| = m · p q. We learn a
pair of parametersγ(k) andβ(k) per feature map, rather
than per activation. Alg. 2 is modified similarly, so that
during inference the BN transform applies the same linear
transformation to each activation in a given feature map.

3.3 Batch Normalization enables higher
learning rates

In traditional deep networks, too-high learning rate may
result in the gradients that explode or vanish, as well as
getting stuck in poor local minima. Batch Normaliza-
tion helps address these issues. By normalizing activa-
tions throughout the network, it prevents small changes
to the parameters from amplifying into larger and subop-
timal changes in activations in gradients; for instance, it
prevents the training from getting stuck in the saturated
regimes of nonlinearities.

Batch Normalization also makes training more resilient
to the parameter scale. Normally, large learning rates may
increase the scale of layer parameters, which then amplify

the gradient during backpropagationand lead to the model
explosion. However, with Batch Normalization, back-
propagation through a layer is unaffected by the scale of
its parameters. Indeed, for a scalara,

BN(Wu) = BN((aW )u)

and we can show that

∂BN((aW )u)
∂u = ∂BN(Wu)

∂u

∂BN((aW )u)
∂(aW ) = 1

a ·
∂BN(Wu)

∂W

The scale does not affect the layer Jacobian nor, con-
sequently, the gradient propagation. Moreover, larger
weights lead tosmallergradients, and Batch Normaliza-
tion will stabilize the parameter growth.

We further conjecture that Batch Normalization may
lead the layer Jacobians to have singular values close to 1,
which is known to be beneficial for training (Saxe et al.,
2013). Consider two consecutive layers with normalized
inputs, and the transformation between these normalized
vectors:̂z = F (x̂). If we assume that̂x andẑ are Gaussian
and uncorrelated, and thatF (x̂) ≈ J x̂ is a linear transfor-
mation for the given model parameters, then bothx̂ andẑ
have unit covariances, andI = Cov[̂z] = JCov[x̂]JT =
JJT . Thus,JJT = I, and so all singular values ofJ
are equal to 1, which preserves the gradient magnitudes
during backpropagation. In reality, the transformation is
not linear, and the normalized values are not guaranteed to
be Gaussian nor independent, but we nevertheless expect
Batch Normalization to help make gradient propagation
better behaved. The precise effect of Batch Normaliza-
tion on gradient propagation remains an area of further
study.

3.4 Batch Normalization regularizes the
model

When training with Batch Normalization, a training ex-
ample is seen in conjunction with other examples in the
mini-batch, and the training network no longer produc-
ing deterministic values for a given training example. In
our experiments, we found this effect to be advantageous
to the generalization of the network. Whereas Dropout
(Srivastava et al., 2014) is typically used to reduce over-
fitting, in a batch-normalized network we found that it can
be either removed or reduced in strength.

4 Experiments

4.1 Activations over time

To verify the effects of internal covariate shift on train-
ing, and the ability of Batch Normalization to combat it,
we considered the problem of predicting the digit class on
the MNIST dataset (LeCun et al., 1998a). We used a very
simple network, with a 28x28 binary image as input, and
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Figure 1: (a)The test accuracy of the MNIST network
trained with and without Batch Normalization, vs. the
number of training steps. Batch Normalization helps the
network train faster and achieve higher accuracy.(b,
c) The evolution of input distributions to a typical sig-
moid, over the course of training, shown as{15, 50, 85}th
percentiles. Batch Normalization makes the distribution
more stable and reduces the internal covariate shift.

3 fully-connected hidden layers with 100 activations each.
Each hidden layer computesy = g(Wu+b)with sigmoid
nonlinearity, and the weightsW initialized to small ran-
dom Gaussian values. The last hidden layer is followed
by a fully-connected layer with 10 activations (one per
class) and cross-entropy loss. We trained the network for
50000 steps, with 60 examples per mini-batch. We added
Batch Normalization to each hidden layer of the network,
as in Sec. 3.1. We were interested in the comparison be-
tween the baseline and batch-normalized networks, rather
than achieving the state of the art performance on MNIST
(which the described architecture does not).

Figure 1(a) shows the fraction of correct predictions
by the two networks on held-out test data, as training
progresses. The batch-normalized network enjoys the
higher test accuracy. To investigate why, we studied in-
puts to the sigmoid, in the original networkN and batch-
normalized networkNtr

BN (Alg. 2) over the course of train-
ing. In Fig. 1(b,c) we show, for one typical activation from
the last hidden layer of each network, how its distribu-
tion evolves. The distributions in the original network
change significantly over time, both in their mean and
the variance, which complicates the training of the sub-
sequent layers. In contrast, the distributions in the batch-
normalized network are much more stable as training pro-
gresses, which aids the training.

4.2 ImageNet classification

We applied Batch Normalization to a new variant of the
Inception network (Szegedy et al., 2014), trained on the
ImageNet classification task (Russakovsky et al., 2014).
The network has a large number of convolutional and
pooling layers, with a softmax layer to predict the image
class, out of 1000 possibilities. Convolutional layers use
ReLU as the nonlinearity. The main difference to the net-
work described in (Szegedy et al., 2014) is that the5 × 5
convolutional layers are replaced by two consecutive lay-
ers of3 × 3 convolutions with up to128 filters. The net-
work contains13.6 · 106 parameters, and, other than the
top softmax layer, has no fully-connected layers. More

details are given in the Appendix. We refer to this model
asInceptionin the rest of the text. The model was trained
using a version of Stochastic Gradient Descent with mo-
mentum (Sutskever et al., 2013), using the mini-batch size
of 32. The training was performed using a large-scale, dis-
tributed architecture (similar to (Dean et al., 2012)). All
networks are evaluated as training progresses by comput-
ing the validation accuracy@1, i.e. the probability of
predicting the correct label out of 1000 possibilities, on
a held-out set, using a single crop per image.

In our experiments, we evaluated several modifications
of Inception with Batch Normalization. In all cases, Batch
Normalization was applied to the input of each nonlinear-
ity, in a convolutional way, as described in section 3.2,
while keeping the rest of the architecture constant.

4.2.1 Accelerating BN Networks

Simply adding Batch Normalization to a network does not
take full advantage of our method. To do so, we further
changed the network and its training parameters, as fol-
lows:

Increase learning rate.In a batch-normalized model,
we have been able to achieve a training speedup from
higher learning rates, with no ill side effects (Sec. 3.3).

Remove Dropout.As described in Sec. 3.4, Batch Nor-
malization fulfills some of the same goals as Dropout. Re-
moving Dropout from Modified BN-Inception speeds up
training, without increasing overfitting.

Reduce theL2 weight regularization.While in Incep-
tion anL2 loss on the model parameters controls overfit-
ting, in Modified BN-Inception the weight of this loss is
reduced by a factor of 5. We find that this improves the
accuracy on the held-out validation data.

Accelerate the learning rate decay.In training Incep-
tion, learning rate was decayed exponentially. Because
our network trains faster than Inception, we lower the
learning rate 6 times faster.

Remove Local Response NormalizationWhile Incep-
tion and other networks (Srivastava et al., 2014) benefit
from it, we found that with Batch Normalization it is not
necessary.

Shuffle training examples more thoroughly.We enabled
within-shard shuffling of the training data, which prevents
the same examples from always appearing in a mini-batch
together. This led to about 1% improvements in the val-
idation accuracy, which is consistent with the view of
Batch Normalization as a regularizer (Sec. 3.4): the ran-
domization inherent in our method should be most bene-
ficial when it affects an example differently each time it is
seen.

Reduce the photometric distortions.Because batch-
normalized networks train faster and observe each train-
ing example fewer times, we let the trainer focus on more
“real” images by distorting them less.
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Figure 2: Single crop validation accuracy of Inception
and its batch-normalized variants, vs. the number of
training steps.

Model Steps to 72.2% Max accuracy
Inception 31.0 · 106 72.2%

BN-Baseline 13.3 · 106 72.7%
BN-x5 2.1 · 106 73.0%
BN-x30 2.7 · 106 74.8%

BN-x5-Sigmoid 69.8%

Figure 3: For Inception and the batch-normalized
variants, the number of training steps required to
reach the maximum accuracy of Inception (72.2%),
and the maximum accuracy achieved by the net-
work.

4.2.2 Single-Network Classification

We evaluated the following networks, all trained on the
LSVRC2012 training data, and tested on the validation
data:

Inception: the network described at the beginning of
Section 4.2, trained with the initial learning rate of 0.0015.

BN-Baseline: Same as Inception with Batch Normal-
ization before each nonlinearity.

BN-x5: Inception with Batch Normalization and the
modifications in Sec. 4.2.1. The initial learning rate was
increased by a factor of 5, to 0.0075. The same learning
rate increase with original Inception caused the model pa-
rameters to reach machine infinity.

BN-x30: Like BN-x5, but with the initial learning rate
0.045 (30 times that of Inception).

BN-x5-Sigmoid: Like BN-x5, but with sigmoid non-
linearity g(t) = 1

1+exp(−x) instead of ReLU. We also at-
tempted to train the original Inception with sigmoid, but
the model remained at the accuracy equivalent to chance.

In Figure 2, we show the validation accuracy of the
networks, as a function of the number of training steps.
Inception reached the accuracy of 72.2% after31 · 106
training steps. The Figure 3 shows, for each network,
the number of training steps required to reach the same
72.2% accuracy, as well as the maximum validation accu-
racy reached by the network and the number of steps to
reach it.

By only using Batch Normalization (BN-Baseline), we
match the accuracy of Inception in less than half the num-
ber of training steps. By applying the modifications in
Sec. 4.2.1, we significantly increase the training speed of
the network.BN-x5 needs 14 times fewer steps than In-
ception to reach the 72.2% accuracy. Interestingly, in-
creasing the learning rate further (BN-x30) causes the
model to train somewhatslower initially, but allows it to
reach a higher final accuracy. It reaches 74.8% after6·106
steps, i.e. 5 times fewer steps than required by Inception
to reach 72.2%.

We also verified that the reduction in internal covari-
ate shift allows deep networks with Batch Normalization

to be trained when sigmoid is used as the nonlinearity,
despite the well-known difficulty of training such net-
works. Indeed,BN-x5-Sigmoidachieves the accuracy of
69.8%. Without Batch Normalization, Inception with sig-
moid never achieves better than1/1000 accuracy.

4.2.3 Ensemble Classification

The current reported best results on the ImageNet Large
Scale Visual Recognition Competition are reached by the
Deep Image ensemble of traditional models (Wu et al.,
2015) and the ensemble model of (He et al., 2015). The
latter reports the top-5 error of 4.94%, as evaluated by the
ILSVRC server. Here we report a top-5 validation error of
4.9%, and test error of 4.82% (according to the ILSVRC
server). This improves upon the previous best result, and
exceeds the estimated accuracy of human raters according
to (Russakovsky et al., 2014).

For our ensemble, we used 6 networks. Each was based
onBN-x30, modified via some of the following: increased
initial weights in the convolutional layers; using Dropout
(with the Dropout probability of 5% or 10%, vs. 40%
for the original Inception); and using non-convolutional,
per-activation Batch Normalization with last hidden lay-
ers of the model. Each network achieved its maximum
accuracy after about6 · 106 training steps. The ensemble
prediction was based on the arithmetic average of class
probabilities predicted by the constituent networks. The
details of ensemble and multicrop inference are similar to
(Szegedy et al., 2014).

We demonstrate in Fig. 4 that batch normalization al-
lows us to set new state-of-the-art by a healthy margin on
the ImageNet classification challenge benchmarks.

5 Conclusion

We have presented a novel mechanism for dramatically
accelerating the training of deep networks. It is based on
the premise that covariate shift, which is known to com-
plicate the training of machine learning systems, also ap-
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Model Resolution Crops Models Top-1 error Top-5 error
GoogLeNet ensemble 224 144 7 - 6.67%
Deep Image low-res 256 - 1 - 7.96%
Deep Image high-res 512 - 1 24.88 7.42%
Deep Image ensemble variable - - - 5.98%

BN-Inception single crop 224 1 1 25.2% 7.82%
BN-Inception multicrop 224 144 1 21.99% 5.82%
BN-Inception ensemble 224 144 6 20.1% 4.9%*

Figure 4:Batch-Normalized Inception comparison with previous state of the art on the provided validation set com-
prising 50000 images. *BN-Inception ensemble has reached 4.82% top-5 error on the 100000 images of the test set of
the ImageNet as reported by the test server.

plies to sub-networks and layers, and removing it from
internal activations of the network may aid in training.
Our proposed method draws its power from normalizing
activations, and from incorporating this normalization in
the network architecture itself. This ensures that the nor-
malization is appropriately handled by any optimization
method that is being used to train the network. To en-
able stochastic optimization methods commonly used in
deep network training, we perform the normalization for
each mini-batch, and backpropagate the gradients through
the normalization parameters. Batch Normalization adds
only two extra parameters per activation, and in doing so
preserves the representation ability of the network. We
presented an algorithm for constructing, training, and per-
forming inference with batch-normalized networks. The
resulting networks can be trained with saturating nonlin-
earities, are more tolerant to increased training rates, and
often do not require Dropout for regularization.

Merely adding Batch Normalization to a state-of-the-
art image classification model yields a substantial speedup
in training. By further increasing the learning rates, re-
moving Dropout, and applying other modifications af-
forded by Batch Normalization, we reach the previous
state of the art with only a small fraction of training steps
– and then beat the state of the art in single-network image
classification. Furthermore, by combining multiple mod-
els trained with Batch Normalization, we perform better
than the best known system on ImageNet, by a significant
margin.

Interestingly, our method bears similarity to the stan-
dardization layer of (Gülçehre & Bengio, 2013), though
the two methods stem from very different goals, and per-
form different tasks. The goal of Batch Normalization
is to achieve a stable distribution of activation values
throughout training, and in our experiments we apply it
before the nonlinearity since that is where matching the
first and second moments is more likely to result in a
stable distribution. On the contrary, (Gülçehre & Bengio,
2013) apply the standardization layer to theoutputof the
nonlinearity, which results in sparser activations. In our
large-scale image classification experiments, we have not
observed the nonlinearityinputsto be sparse, neither with
nor without Batch Normalization. Other notable differ-

entiating characteristics of Batch Normalization include
the learned scale and shift that allow the BN transform
to represent identity (the standardization layer did not re-
quire this since it was followed by the learned linear trans-
form that, conceptually, absorbs the necessary scale and
shift), handling of convolutional layers, deterministic in-
ference that does not depend on the mini-batch, and batch-
normalizing each convolutional layer in the network.

In this work, we have not explored the full range of
possibilities that Batch Normalization potentially enables.
Our future work includes applications of our method to
Recurrent Neural Networks (Pascanu et al., 2013), where
the internal covariate shift and the vanishing or exploding
gradients may be especially severe, and which would al-
low us to more thoroughly test the hypothesis that normal-
ization improves gradient propagation (Sec. 3.3). We plan
to investigate whether Batch Normalization can help with
domain adaptation, in its traditional sense – i.e. whether
the normalization performed by the network would al-
low it to more easily generalize to new data distribu-
tions, perhaps with just a recomputation of the population
means and variances (Alg. 2). Finally, we believe that fur-
ther theoretical analysis of the algorithm would allow still
more improvements and applications.
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Appendix

Variant of the Inception Model Used

Figure 5 documents the changes that were performed
compared to the architecture with respect to the
GoogleNet archictecture. For the interpretation of this
table, please consult (Szegedy et al., 2014). The notable
architecture changes compared to the GoogLeNet model
include:

• The 5×5 convolutional layers are replaced by two
consecutive 3×3 convolutional layers. This in-
creases the maximum depth of the network by 9
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weight layers. Also it increases the number of pa-
rameters by 25% and the computational cost is in-
creased by about 30%.

• The number 28×28 inception modules is increased
from 2 to 3.

• Inside the modules, sometimes average, sometimes
maximum-pooling is employed. This is indicated in
the entries corresponding to the pooling layers of the
table.

• There are no across the board pooling layers be-
tween any two Inception modules, but stride-2 con-
volution/pooling layers are employed before the fil-
ter concatenation in the modules 3c, 4e.

Our model employed separable convolution with depth
multiplier 8 on the first convolutional layer. This reduces
the computational cost while increasing the memory con-
sumption at training time.
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type
patch size/

stride
output

size
depth #1×1

#3×3

reduce
#3×3

double#3×3

reduce
double
#3×3

Pool +proj

convolution* 7×7/2 112×112×64 1
max pool 3×3/2 56×56×64 0
convolution 3×3/1 56×56×192 1 64 192
max pool 3×3/2 28×28×192 0
inception (3a) 28×28×256 3 64 64 64 64 96 avg + 32
inception (3b) 28×28×320 3 64 64 96 64 96 avg + 64
inception (3c) stride 2 28×28×576 3 0 128 160 64 96 max + pass through
inception (4a) 14×14×576 3 224 64 96 96 128 avg + 128
inception (4b) 14×14×576 3 192 96 128 96 128 avg + 128
inception (4c) 14×14×576 3 160 128 160 128 160 avg + 128
inception (4d) 14×14×576 3 96 128 192 160 192 avg + 128
inception (4e) stride 2 14×14×1024 3 0 128 192 192 256 max + pass through
inception (5a) 7×7×1024 3 352 192 320 160 224 avg + 128
inception (5b) 7×7×1024 3 352 192 320 192 224 max + 128
avg pool 7×7/1 1×1×1024 0

Figure 5: Inception architecture
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