arXiv:1502.03167v3 [cs.LG] 2 Mar 2015

Batch Normalization: Accelerating Deep Network Training b
Reducing Internal Covariate Shift

Sergey loffe Christian Szegedy
Google Inc. sioffe@google.com Google Inc. szegedy@google.com

Abstract Using mini-batches of examples, as opposed to one exam-
ple at atime, is helpful in several ways. First, the gradient
Training Deep Neural Networks is complicated by the fagt the loss over a mini-batch is an estimate of the gradient
that the distribution of each layer’s inputs changes durigger the training set, whose quality improves as the batch
training, as the parameters of the previous layers changige increases. Second, computation over a batch can be
This slows down the training by requiring lower learningnuch more efficient tham computations for individual
rates and careful parameter initialization, and makes-it ixamples, due to the parallelism afforded by the modern
toriously hard to train models with saturating nonlineartomputing platforms.
ties. We refer to this phenomenoniagernal covariate While stochastic gradient is simple and effective, it
shift, and address the problem by normalizing layer ifequires careful tuning of the model hyper-parameters,
puts. Our method draws its strength from making normapecifically the learning rate used in optimization, as well
ization a part of the model architecture and performing tag the initial values for the model parameters. The train-
normalizationfor each training mini-batch Batch Nor- ing is complicated by the fact that the inputs to each layer
malization allows us to use much higher learning rates ag@ affected by the parameters of all preceding layers — so
be less careful about initialization. It also acts as a regtat small changes to the network parameters amplify as
larizer, in some cases eliminating the need for Dropotie network becomes deeper.
Applied to a state-of-the-art image classification model, The change in the distributions of layers’ inputs
Batch Normalization achieves the same accuracy with gédesents a problem because the layers need to continu-
times fewer training steps, and beats the original mogglsly adapt to the new distribution. When the input dis-
by a significant margin. Using an ensemble of batchibution to a learning system changes, it is said to experi-
normalized networks, we improve upon the best publisheflicecovariate shift(Shimodaira, 2000). This is typically
result on ImageNet classification: reaching 4.9% topHandled via domain adaptation (Jiang, 2008). However,
validation error (and 4.8% test error), exceeding the agre notion of covariate shift can be extended beyond the

curacy of human raters. learning system as a whole, to apply to its parts, such as a
sub-network or a layer. Consider a network computing
1 Introduction (= Fy(Fy(u,01),0,)

Deep learning has dramatically advanced the state of iigere F;, and F,, are arbitrary transformations, and the
art in vision, speech, and many other areas. Stochparameter®,, 0, are to be learned so as to minimize
tic gradient descent (SGD) has proved to be an effehe lossé. Learning®, can be viewed as if the inputs
tive way of training deep networks, and SGD varianis= F (u, ©,) are fed into the sub-network

such as momentum (Sutskever €tlal., 2013) and Adagrad

(Duchi et al.| 2011) have been used to achieve state of the { = F3(x,02).

art performance. SGD optimizes the parameti the

network, so as to minimize the loss For example, a gradient descent step

N m
1 (6% 8F2 (Xi, 92)
_ T . Oy + Oy — — _—
0= argmin — ;ﬁ(xl, 0) 2 2= — ; 50,

wherex; _ y is the training data set. With SGD, the train¢for batch sizen and learning rate) is exactly equivalent
ing proceeds in steps, and at each step we consiti@ria to that for a stand-alone netwof with inputx. There-
batChX1...m of sizem. The m|n|-batc_h IS u_sed to approxfore, the input distribution properties that make training
imate the gradient of the loss function with respect to thore efficient — such as having the same distribution be-

parameters, by computing tween the training and test data — apply to training the
1 90(x;,0) sub-network as well. As such it is advantageous for the
- 876’ distribution ofx to remain fixed over time. Thef, does

http://arxiv.org/abs/1502.03167v3

not have to readjust to compensate for the change in #e Towards Reducing Internal
distribution ofx. Covariate Shift

Fixed distribution of inputs to a sub-network wouldye gefineinternal Covariate Shifas the change in the
have positive consequences for the I_aymls!dethg SUb'. distribution of network activations due to the change in
qetwork, as well. Consider a layer W.'th a S|gm0|ql aCV@awork parameters during training. To improve the train-
tion functionz = g(Wu + b) whereu is the layer input, ing, we seek to reduce the internal covariate shift. By
the weight matrix}V” and bias vectob are the layer pa- iy the distribution of the layer inputsas the training
rameters to be leamned, apdv) = 5 AS |l progresses, we expect to improve the training speed. It has
increasesy’(x) tends to zero. This means that for all dipeen long knownl (LeCun etlal., 1998b; Wiesler & Ney,
mensions ok = Wu-+b except those with small absolut®1 1) that the network training converges faster if its in-
values, the gradient flowing down towill vanish and the pts are whitened - i.e., linearly transformed to have zero
model will train slowly. However, since is affected by means and unit variances, and decorrelated. As each layer
W,b and the parameters of all the layers below, chang@sserves the inputs produced by the layers below, it would
to those parameters during training will likely move manye advantageous to achieve the same whitening of the in-
dim_ensions ok into the saturated regime of the nonIinputS of each layer. By whitening the inputs to each layer,
earity and slow down the convergence. This effect g would take a step towards achieving the fixed distri-
amplified as the network depth increases. In practiqggtions of inputs that would remove the ill effects of the
the saturation problem and the resulting vanishing gragliternal covariate shift.
ents are usually addressed by using Rectified Linear Unit§Ne could consider whitening activations at every train-

(Nair & Hinton, l2010) ReLU(x) = max(z,0), careful ing step or at some interval, either by modifying the
initialization (Bengio & Glorat| 2010; Saxe etlal., 2013) 9 PO . y 9
network directly or by changing the parameters of the

and small learning rates. If, however, we could ensu(é%timization algorithm to depend on the network ac-

that the distribution of nonlinearity inputs remains moruyation values [(Wiesler et hll, 2014: Raiko et al., 2012;

stablg as the network tn_’;uns, then the optlmlger would BSvey etal.] 2014; Desjardins & Kavukcudglu). How-
less likely to get stuck in the saturated regime, and the ™. o . ‘

o ever, if these modifications are interspersed with the op-
training would accelerate. T .

timization steps, then the gradient descent step may at-

tempt to update the parameters in a way that requires

We refer to the change in the distributions of internghe normalization to be updated, which reduces the ef-
nodes of a deep network, in the course of trainingnas fect of the gradient step. For example, consider a layer
ternal Covariate Shift Eliminating it offers a promise of with the inputu that adds the learned biasand normal-
faster training. We propose a new mechanism, which \w@s the result by subtracting the mean of the activation
call Batch Normalizationthat takes a step towards reeomputed over the training dat& = = — E[x] where
ducing internal covariate shift, and in doing so dramati-= u + b, X = {x;._n} is the set of values of over
cally accelerates the training of deep neural nets. It afe training set, and [E] = + Z?Ll z;. If a gradient
complishes this via a normalization step that fixes tRRscent step ignores the dependence|of & b, then it
means and variances of layer inputs. Batch Normalizatigfll updateb «+ b + Ab, whereAb « —d¢/d%. Then
also has a beneficial effect on the gradient flow throughi (» + Ab) — E[u + (b + Ab)] = u + b — E[u + b].
the network, by reducing the dependence of gradientgus, the combination of the updatelitand subsequent
on the scale of the parameters or of their initial Va|U%ange in normalization led to no Change in the output
This allows us to use much higher learning rates witgf the layer nor, consequently, the loss. As the training
out the risk of divergence. Furthermore, batch normabntinuesp will grow indefinitely while the loss remains
ization regularizes the model and reduces the need figed. This problem can get worse if the normalization not
Dropout (Srivastava et al., 2014). Finally, Batch Normagn|y centers but also scales the activations. We have ob-
ization makes it possible to use saturating nonlinearitigsrved this empirically in initial experiments, where the
by preventing the network from getting stuck in the satimodel blows up when the normalization parameters are
rated modes. computed outside the gradient descent step.

The issue with the above approach is that the gradient

In Sec[4.P, we apply Batch Normalization to the besdescent optimization does not take into account the fact

performing ImageNet classification network, and shatliat the normalization takes place. To address this issue,

that we can match its performance using only 7% of tle would like to ensure that, for any parameter values,
training steps, and can further exceed its accuracy byha networkalwaysproduces activations with the desired
substantial margin. Using an ensemble of such netwodistribution. Doing so would allow the gradient of the

trained with Batch Normalization, we achieve the top{bss with respect to the model parameters to account for

error rate that improves upon the best known results tive normalization, and for its dependence on the model
ImageNet classification. parameter®. Let againx be a layer input, treated as a

vector, andY be the set of these inputs over the traininge introduce, for each activatiat*), a pair of parameters
data set. The normalization can then be written as a tran8?, 3(*), which scale and shift the normalized value:
formation) (k) (k))
% = Norm(x, X) Yy =T £ p
which depends not only on the given training exampleThese parameters are learned along with the original
but on all examplest’ — each of which depends @ if model parameters, and restore the representation power
x is generated by another layer. For backpropagation, wfehe network. Indeed, by settind®) = /Var[z(*)] and
would need to compute the Jacobians B = E[2(®)], we could recover the original activations,
if that were the optimal thing to do.
ONorm(x, X) _ -, ONorm(x, X) : In the batch setting where each training step is based on
Ox ox the entire training set, we would use the whole set to nor-

ignoring the latter term would lead to the explosion dénalize activz_sltions_. I-_|ow_ever, this is impractical when us-
scribed above. Within this framework, whitening the layéRg stochastic optimization. Therefore, we make the sec-
inputs is expensive, as it requires computing the cova@id simplification: since we use mini-batches in stochas-
ance matrix Cofk] = E.cx[xx?] — E[x]E[x]” and its tic gradient trainingeach mini-batch produces estimates
inverse square root, to produce the whitened activatid¥fghe mean and variana each activation. This way, the
Covix]~'/2(x — E[x]), as well as the derivatives of thesétatistics used for normalization can fully participate in
transforms for backpropagation. This motivates us to s¢bk gradient backpropagation. Note that the use of mini-
an alternative that performs input normalization in a waiatches is enabled by computation of per-dimension vari-

that is differentiable and does not require the analysisa&ices rather than joint covariances; in the joint case, reg-
the entire training set after every parameter update_ ularization would be I'EC]UiI'Ed since the mini-batch size is

Some of the previous approaches (e.bkely to be smaller than the number of activations being
(Lyu & Simoncell, [2008)) use statistics computewhitened, resulting in singular covariance matrices.
over a single training example, or, in the case of imageConsider a mini-batci$ of sizem. Since the normal-
networks, over different feature maps at a given locatid@ation is applied to each activation independently, let us
However, this changes the representation ability off@cus on a particular activatiort*) and omitk for clarity.
network by discarding the absolute scale of activationde havemn values of this activation in the mini-batch,
We want to a preserve the information in the network, by

normalizing the activations in a training example relative
Let the normalized values lag _,,,, and their linear trans-

to the statistics of the entire training data.
formations bey; .. ,,,. We refer to the transform

3 Normalization via Mini-Batch

Statistics
as theBatch Normalizing TransformWe present the BN
Since the full whitening of each layer's inputs is costijransformin Algorithni L. In the algorithnajis a constant
and not everywhere differentiable, we make two necédded to the mini-batch variance for numerical stability.

BN'y,B X1.m 7 Yl..m

sary simplifications. The first is that instead of whitenipg —
the features in layer inputs and outputs jointly, we wilnput: Values ofz over a mini-batch8 = {z1. . };
normalize each scalar feature independently, by makingit ~ Parameters to be learneg: 3
have the mean of zero and the variance of 1. For a lajytput: {y; = BN, s(z;)}
with d-dimensional inpuk = (z(V) ... z(?), we will nor- .
i i i 1 -
malize each dimension B — — Z 2 J/ mini-batch meanh
(k) _ (k) i=1
S(6) _ xiE[xk] o
Var[z(®)] op — — > (z; — pp)? I mini-batch variance
m
where the expectation and variance are computed ovelr the - =1
training data set. As shown in (LeCun et al., 1998b), suich 7, « %‘LB // normalize
normalization speeds up convergence, even when the|fea- Vopte
tures are not decorrelated. Yi < Y% + B = BN, g(z;) /I scale and shift
Note that simply normalizing each input of a layer may

change what the layer can represent. For instance, NQgorithm 1: Batch Normalizing Transform, applied to
malizing the inputs of a sigmoid would constrain them tgctivationz over a mini-batch.

the linear regime of the nonlinearity. To address this, we
make sure thahe transformation inserted in the network The BN transform can be added to a network to manip-
can represent the identity transforriio accomplish this, ulate any activation. In the notatign= BN, g(x), we

indicate that the parametessand S are to be learned, (Duchi et al., 2011). The normalization of activations that
but it should be noted that the BN transform does ndépends on the mini-batch allows efficient training, but is
independently process the activation in each training exeither necessary nor desirable during inference; we want
ample. Rather, BNg(z) depends both on the traininghe output to depend only on the input, deterministically.
exampleand the other examples in the mini-batchhe For this, once the network has been trained, we use the
scaled and shifted valugsare passed to other networkormalization

layers. The normalized activationsare internal to our = _ %~ Elz]

transformation, but their presence is crucial. The distri- Var(z] + ¢

butions of values of any has the expected value 6f . . - -
. sing the population, rather than mini-batch, statistics.
and the variance of, as long as the elements of eacﬁI

mini-batch are sampled from the same distribution, anc?e %f%“ggg \t/g(reiZicngrlmaﬂlzi?ir?c?;/;a?nns rxgitszetﬁ:rgg_
if we neglecte. This can be seen by observing th 9 9.

. : : e 5
S, = 0and1 Y 72 = 1, and taking expec_ablased variance estimate Var = - - Eg[o], where

m—1
tations. Each normalized activati@f®) can be viewed as

the expectation is over training mini-batches of sizand
5 . . : i .
: . are their sample variances. Using moving averages in-
an input to a sub-network composed of the linear trar%[’ﬁe b 9 g 9
form y*) = v(0z(*) 4 3(*) followed by the other pro-

ad, we can track the accuracy of a model as it trains.

. - Since the means and variances are fixed during inference,
cessing done by the original network. These sub-netw
inputs all have fixed means and variances, and altho

normalization is simply a linear transform applied to
e ; h activation. It may further be composed with the scal-
&) . . . ; :
the joint distribution of these normalized® can change ing by~ and shift by3, to yield a single linear transform

over the course of training, we expect that the introd iat replaces BI). Algorithm[Z summarizes the proce-

tion of normalized inputs accelerates the training of ﬂ?ﬁjre for training batch-normalized networks.
sub-network and, consequently, the network as a whole.

During training we need to backpropagate the gradi= : -
ent of losst through this transformation, as well as co(JH-”PUt Network N with tralnabllce parameters;
pute the gradients with respect to the parameters of{the ~ Subsetof activationfr ™}, o
BN transform. We use chain rule, as follows (before siputput: Batch-normalized network for inferendiy

plification): 1: N5y < N /[Training BN network
2. fork=1...Kdo
=y 3 Add transformationy®) = BN_) o (2(¥) to
9 _Nx~m o 9 (o =12 —3/2 N (Alg. D)
-2 i=1 oz, \Ti /LB) o +6) BN . Sl
bo Zim1 9, (2 (% 4: Modify each layer inNiy with input2(®) to take|
ot _ (ymoor 1y o Xt 2 y*) instead
Opss =05 (foRte) 0B m 5. end for
ot _ ot 1 o 0t 2Aei—ps) | 0L 1 6. Train Njjy to optimize the parameter® U
ox; oT; \/@ 9o, m ou m {’Y(k)aﬂ(k)}szl
L=yl AT 7. NBf < N/l Inference BN network with frozer
20 _ gm0 [/l parameters
oB i=1 dy;
)))) g fork=1...Kdo
Thus, BN transform is a differentiable transformation that,. /; gor clarity,z = 2,y = ~®) g = #gc) etc.

introduces normalized activations into the network. Thig. process multiple training mini-batch&s each of
ensures that as the model is training, layers can contjnue sizem, and average over them:
learning on input distributions that exhibit less interoad
variate shift, thus accelerating the training. Furtherng
the learned affine transform applied to these normalized Varfz] < %EB[O’%]

activations allows the BN transform to represent the iden-

tity transformation and preserves the network capacity. 11: In N2, replace the transform = BN, s(x) with

E[z] < Es[us]

=

v = o+ 6~)
3.1 Training and Inference with Batch- | 5. end for
Normalized Networks Algorithm 2: Training a Batch-Normalized Network

To Batch-Normalizex network, we specify a subset of ac-

tivations and insert the BN transform for each of them,

according to AlgLIL. Any layer that previously received 2 Batch-Normalized Convolutional Net-

x as the input, now receives BNX). A model employing works

Batch Normalization can be trained using batch gradient

descent, or Stochastic Gradient Descent with a mini-baatch Normalization can be applied to any set of acti-
sizem > 1, or with any of its variants such as Adagragations in the network. Here, we focus on transforms

that consist of an affine transformation followed by athe gradient during backpropagation and lead to the model

element-wise nonlinearity: explosion. However, with Batch Normalization, back-
propagation through a layer is unaffected by the scale of
z=g(Wu+b) its parameters. Indeed, for a scadar
whereW andb are learned parameters of the model, and BN(Wu) = BN((aWW)u)

¢(+) is the nonlinearity such as sigmoid or ReLU. This for-
mulation covers both fully-connected and convolutionahd we can show that

layers. We add the BN transform immediately before the
OBN((aW)u) OBN(Wu)

nonlinearity, by normalizing = Wu-+b. We could have Ju =~ 5u
also normalized the layer inputs but sinceu is likely 8Bg(((aW))u) _ 1, an\al(Wu)
aW a w

the output of another nonlinearity, the shape of its distri-

butionis likely to change during training, and constra@inthe scale does not affect the layer Jacobian nor, con-
its first and second moments would not eliminate the cgaquently, the gradient propagation. Moreover, larger
variate shift. In contrasfiy’u + b is more likely to have weights lead tsmallergradients, and Batch Normaliza-
a symmetric, non-sparse distribution, that is “more Gaugsn will stabilize the parameter growth.
sian” (Hyvarinen & Oja, 2000); normalizing itis likely to \we further conjecture that Batch Normalization may
produce activations with a stable distribution. lead the layer Jacobians to have singular values close to 1,

Note that, since we normaliZ€'u+Db, the biasb canbe hich is known to be beneficial for training (Saxe €t al.,
ignored since its effect will be canceled by the subsequgif1 3). Consider two consecutive layers with normalized
mean subtraction (the role of the bias is subsumed oy inputs, and the transformation between these normalized
Alg.[). Thusz = g(Wu + b) is replaced with vectorsZ = F(X). If we assume that andz are Gaussian

and uncorrelated, and th&{x) ~ JX is a linear transfor-
z = g(BN(Wu)) mation for the given model parameters, then bo#ndz

H i _ 5 31 7T
where the BN transform is applied independently to ea@ﬁve unit covariances, and= Coviz] = JCov[x].J" =

T T _ i
dimension ofx = Wu, with a separate pair of learned’” " - Thlus,JlJ h_ t{ and so allslngulg_r values d q
parameters ", () per dimension. are equal to 1, which preserves the gradient magnitudes

For convolutional layers, we additionally want the norquring backpropagation. In reality, the transformation is
malization to obey the convolutional property — so th tlinear, and the normalized values are not guaranteed to

different elements of the same feature map, at differ Gaussian nor independent, but we nevertheless expect

locations, are normalized in the same way. To achie gtch Normalization to help make gradient propagation

this, we jointly normalize all the activations in a mini_better behaved. The precise effect of Batch Normaliza-

batch, over all locations. In Al 1, we I& be the set of tion on gradient propagation remains an area of further
all values in a feature map across both the elements otddy-

mini-batch and spatial locations — so for a mini-batch of

sizem and feature maps of sizex ¢, we use the effec- 3.4 Batch Normalization regularizes the
tive mini-batch of sizen’ = |B| = m - pq. We learn a model

pair of parameters(*) and (%) per feature map, rather . _ o o
than per activation. Ald.12 is modified similarly, so thafvhen training with Batch Normalization, a training ex-

during inference the BN transform applies the same linédF'PI€ is seen in conjunction with other examples in the

transformation to each activation in a given feature magnini-batch, and the training network no longer produc-
ing deterministic values for a given training example. In

.. . our experiments, we found this effect to be advantageous

3.3 Bat_Ch Normalization enables higher to the generalization of the network. Whereas Dropout
learning rates (Srivastava et al., 2014) is typically used to reduce over-

%ting, in a batch-normalized network we found that it can

In traditional deep networks, too-high learning rate m : ;
P g g g either removed or reduced in strength.

result in the gradients that explode or vanish, as well

getting stuck in poor local minima. Batch Normaliza-

tion helps address these issues. By normalizing acti\@— Experiments

tions throughout the network, it prevents small changes

t_o the parametfers frqm gmpli_fying in_to larger f_;md suboa—_l Activations over time

timal changes in activations in gradients; for instance, It

prevents the training from getting stuck in the saturatdd verify the effects of internal covariate shift on train-

regimes of nonlinearities. ing, and the ability of Batch Normalization to combat it,
Batch Normalization also makes training more resiliemte considered the problem of predicting the digit class on

to the parameter scale. Normally, large learning rates nmthg MNIST dataset (LeCun etlal., 1998a). We used a very

increase the scale of layer parameters, which then ampéifgnple network, with a 28x28 binary image as input, and

e 2f - details are given in the Appendix. We refer to this model
i asInceptionin the rest of the text. The model was trained

o8ls = - Wiae 0 0 | using a version of Stochastic Gradient Descent with mo-
o 2| T mentum|(Sutskever etldl., 2013), using the mini-batch size
@) (b) Without BN (c) With BN of 32. The training was performed using a large-scale, dis-

tributed architecture (similar to_(Dean et al., 2012)). All
Figure 1: (a)The test accuracy of the MNIST networketworks are evaluated as training progresses by comput-
trained with and without Batch Normalization, vs. th&g the validation accurac@1, i.e. the probability of
number of training steps. Batch Normalization helps thredicting the correct label out of 1000 possibilities, on
network train faster and achieve higher accuracgb, a held-out set, using a single crop per image.
c) The evolution of input distributions to a typical sig- |n our experiments, we evaluated several modifications
moid, over the course of training, shown{s, 50, 85}th of Inception with Batch Normalization. In all cases, Batch
percentiles. Batch Normalization makes the distributio@ormalization was applied to the input of each nonlinear-
more stable and reduces the internal covariate shift. jty in a convolutional way, as described in sectionl 3.2,

while keeping the rest of the architecture constant.

3 fully-connected hidden layers with 100 activations each.
Each hidden layer computgs= g(1Wu+b) with sigmoid
nonlinearity, and the weightd’ initialized to small ran-

dom Gaussian values. The I?‘St hidder_1 Iayer is fOIIOWgﬂ'nply adding Batch Normalization to a network does not
by a fully-connected layer with 10 activations (0ne peLye | advantage of our method. To do so, we further

class) and cross-entropy loss. We trained the network {gf e the network and its training parameters, as fol-
50000 steps, with 60 examples per mini-batch. We ad 89(/5'

Batch Normalization to each hidden layer of the network, . .

as in Sed_3]1. We were interested in the comparison pelfncrease leaming raten a batch-normalized model,

tween the baseline and batch-normalized networks, rat 5t have be_en able to _ach|e_/e a training speedup from

than achieving the state of the art performance on MNI her leaming rates, with nf) il s-|de effects (Secl 3.3).

(which the described architecture does not). Remove DropoutAs described in Se€. 3.4, Batch Nor-
Figure[1(a) shows the fraction of correct predictiod?al'zat'onfumlls some of the same goals as Dropout. Re-

by the two networks on held-out test data, as trainirﬁ@oving Dropout from Modified BN-Inception speeds up

progresses. The batch-normalized network enjoys ffgining, without increasing overfitting.

higher test accuracy. To investigate why, we studied in-Reduce thel; weight regularization.While in Incep-
puts to the sigmoid, in the original netwoNkand batch- tion an L, loss on the model parameters controls overfit-
normalized networkVy (Alg.2) over the course of train-ting, in Modified BN-Inception the weight of this loss is
ing. In Fig[A(b,c) we show, for one typical activation fronieduced by a factor of 5. We find that this improves the
the last hidden layer of each network, how its distrib@ccuracy on the held-out validation data.

tion evolves. The distributions in the original network Accelerate the learning rate decain training Incep-
change significantly over time, both in their mean artn, learning rate was decayed exponentially. Because
the variance, which complicates the training of the subur network trains faster than Inception, we lower the
sequent layers. In contrast, the distributions in the batd®arning rate 6 times faster.

normalized network are much more stable as training pro-Remove Local Response Normalizatihile Incep-

4.2.1 Accelerating BN Networks

gresses, which aids the training. tion and other networks (Srivastava et al., 2014) benefit
from it, we found that with Batch Normalization it is not
necessary.

4.2 ImageNet classification Shuffle training examples more thoroughiye enabled

We applied Batch Normalization to a new variant of th&ithin-shard shuffling of the training data, which prevents
Inception network|(Szegedy et al., 2014), trained on tHee same examples from always appearing in a mini-batch
ImageNet classification task (Russakovsky étlal., 2o1tgether. This led to about 1% improvements in the val-
The network has a large number of convolutional ar@@tion accuracy, which is consistent with the view of
pooling layers, with a softmax layer to predict the imagdatch Normalization as a regularizer (Secl 3.4): the ran-
class, out of 1000 possibilities. Convolutional layers ug@mization inherent in our method should be most bene-
ReLU as the nonlinearity. The main difference to the néicial when it affects an example differently each time it is
work described in (Szegedy et al., 2014) is thatihe5 Seen.

convolutional layers are replaced by two consecutive lay-Reduce the photometric distortiondBecause batch-
ers of3 x 3 convolutions with up td 28 filters. The net- normalized networks train faster and observe each train-
work containsl3.6 - 10° parameters, and, other than thing example fewer times, we let the trainer focus on more
top softmax layer, has no fully-connected layers. Mofeeal” images by distorting them less.

‘‘‘‘‘‘‘ 0-—_-'___,--—————————0
- Model Stepsto 72.2% Max accuracy
Inception 31.0-10° 72.2%
. BN-Baseline 13.3-106 72.7%
T BN heeine BN-x5 2.1-10° 73.0%
------ BNS BN-x30 2.7-10° 74.8%
+ ' BN-x5-Sigmoid BN'X5-SIngId 69.8%
& Steps to match Inception
1oMm 15M 20M 25M 30M Figure 3: For Inception and the batch-normalized

variants, the number of training steps required to

Figure 2: Single crop validation accuracy of Inception reach the maximum accuracy of Inception (72.2%),
and its batch-normalized variants, vs. the number of and the maximum accuracy achieved by the net-
training steps. work.

4.2.2 Single-Network Classification to be trained when sigmoid is used as the nonlinearity,

i i despite the well-known difficulty of training such net-
We evaluated the following networks, all trained on thg o Indeed BN-x5-Sigmoidachieves the accuracy of

LSVRC2012 training data, and tested on the validatigfy gos, without Batch Normalization, Inception with sig-

data: _ __moid never achieves better tha/i1000 accuracy.
Inception the network described at the beginning of

Sectio 4.P, trained with the initial learning rate of 0.601 -
BN-Baseline Same as Inception with Batch Normal4-2-3 Ensemble Classification

ization before each nonlinearity. o The current reported best results on the ImageNet Large
BN-x5: Inception with Batch Normalization and thescale Visual Recognition Competition are reached by the
modifications in Sed. 4.2.1. The initial learning rate WaSeep Image ensemble of traditional modéls (Wu bt al.,
increased by a factor of 5, to 0.0075. The same learnigg 5) and the ensemble model bf (He et(al., 2015). The
rate increase with original Inception caused the model Rgger reports the top-5 error of 4.94%, as evaluated by the

rameters to reach machine infinity. . ILSVRC server. Here we report a top-5 validation error of
BN-x30. Like BN-x5, but with the initial learning rate 4,995, and test error of 4.82% (according to the ILSVRC
0.045 (30 times that of Inception). server). This improves upon the previous best result, and

BN-x5-Sigmoid Like BN-x5, but with sigmoid non- exceeds the estimated accuracy of human raters according
linearity g(t) = m instead of ReLU. We also at-to (Russakovsky et al., 2014).
tempted to train the original Inception with sigmoid, but For our ensemble, we used 6 networks. Each was based
the model remained at the accuracy equivalent to chang@.BN-x30, modified via some of the following: increased

In Figure[2, we show the validation accuracy of thigitial weights in the convolutional layers; using Dropout
networks, as a function of the number of training stepgvith the Dropout probability of 5% or 10%, vs. 40%
Inception reached the accuracy of 72.2% afier 10° for the original Inception); and using non-convolutional,
training steps. The Figuilg 3 shows, for each netwolker-activation Batch Normalization with last hidden lay-
the number of training steps required to reach the sa@ate of the model. Each network achieved its maximum
72.2% accuracy, as well as the maximum validation accitcuracy after abowt- 10° training steps. The ensemble
racy reached by the network and the number of stepspi@diction was based on the arithmetic average of class
reach it. probabilities predicted by the constituent networks. The

By only using Batch NormalizatiorBN-Baseling, we details of ensemble and multicrop inference are similar to
match the accuracy of Inception in less than half the nugSzegedy et al., 2014).
ber of training steps. By applying the modifications in We demonstrate in Fif] 4 that batch normalization al-
Sec[4.2.11, we significantly increase the training speedi@jvs us to set new state-of-the-art by a healthy margin on

the network.BN-x5 needs 14 times fewer steps than Irthe ImageNet classification challenge benchmarks.
ception to reach the 72.2% accuracy. Interestingly, in-

creasing the learning rate furtheBN-x30) causes the

model to train somewhadowerinitially, but allows itto 5 Conclusion

reach a higher final accuracy. It reaches 74.8% &ften°

steps, i.e. 5 times fewer steps than required by InceptMie have presented a novel mechanism for dramatically

to reach 72.2%. accelerating the training of deep networks. It is based on
We also verified that the reduction in internal covarthe premise that covariate shift, which is known to com-

ate shift allows deep networks with Batch Normalizatigplicate the training of machine learning systems, also ap-

Model Resolution Crops Models Top-1error Top-5 error
GooglLeNet ensemble 224 144 7 - 6.67%
Deep Image low-res 256 - 1 - 7.96%
Deep Image high-res 512 - 1 24.88 7.42%
Deep Image ensemble variable - - - 5.98%
BN-Inception single crop 224 1 1 25.2% 7.82%
BN-Inception multicrop 224 144 1 21.99% 5.82%
BN-Inception ensemble 224 144 6 20.1% 4.9%*

Figure 4:Batch-Normalized Inception comparison with previousestatthe art on the provided validation set com-
prising 50000 images. *BN-Inception ensemble has react#&2P4 top-5 error on the 100000 images of the test set of
the ImageNet as reported by the test server.

plies to sub-networks and layers, and removing it froemtiating characteristics of Batch Normalization include
internal activations of the network may aid in traininghe learned scale and shift that allow the BN transform
Our proposed method draws its power from normalizing represent identity (the standardization layer did net re
activations, and from incorporating this normalization iquire this since it was followed by the learned linear trans-
the network architecture itself. This ensures that the néorm that, conceptually, absorbs the necessary scale and
malization is appropriately handled by any optimizatioshift), handling of convolutional layers, deterministic i
method that is being used to train the network. To eference that does not depend on the mini-batch, and batch-
able stochastic optimization methods commonly usedriormalizing each convolutional layer in the network.

deep network training, we perform the normalization for In this work, we have not explored the full range of
each mini-batch, and backpropagate the gradients thropgksibilities that Batch Normalization potentially eresbl

the normalization parameters. Batch Normalization ad@sir future work includes applications of our method to
only two extra parameters per activation, and in doing Recurrent Neural Networks (Pascanu et al., 2013), where
preserves the representation ability of the network. e internal covariate shift and the vanishing or exploding
presented an algorithm for constructing, training, and perradients may be especially severe, and which would al-
forming inference with batch-normalized networks. Thiew us to more thoroughly test the hypothesis that normal-
resulting networks can be trained with saturating nonliieation improves gradient propagation (9ecl 3.3). We plan
earities, are more tolerant to increased training rates, an investigate whether Batch Normalization can help with
often do not require Dropout for regularization. domain adaptation, in its traditional sense — i.e. whether
jhe normalization performed by the network would al-

Merely adding Batch Normalization to a state-of-th) .) _
? it to more easily generalize to new data distribu-

artimage classification model yields a substantial spee h th iust i fth lati
in training. By further increasing the learning rates, rdlONs, perhaps with just a recomputation of the population

moving Dropout, and applying other modifications afh€ans and yariances (.A' 2). FinaII.y, we believe that fl.'lr_
forded by Batch Normalization, we reach the previodl;gertheoretmal analysis of the_ algorlthm would allowtstil
state of the art with only a small fraction of training step@ore improvements and applications.

—and then beat the state of the art in single-network image

classification. Furthermore, by combining multiple mod-

els trained with Batch Normalization, we perform bettjr?eferences

than the best known system on ImageNet, by a significant _ i
margin. Bengio, Yoshua and Glorot, Xavier. Understanding the

difficulty of training deep feedforward neural networks.

Interestingly, our method bears similarity to the stan- |y proceedings of AISTATS 201blume 9, pp. 249—
dardization layer ofl(Gllcehre & Bengio, 2013), though 256 Mmay 2010.

the two methods stem from very different goals, and per-

form different tasks. The goal of Batch Normalizatiomean, Jeffrey, Corrado, Greg S., Monga, Rajat, Chen, Kai,
is to achieve a stable distribution of activation values Devin, Matthieu, Le, Quoc V., Mao, Mark Z., Ranzato,
throughout training, and in our experiments we apply it Marc’Aurelio, Senior, Andrew, Tucker, Paul, Yang, Ke,
before the nonlinearity since that is where matching theand Ng, Andrew Y. Large scale distributed deep net-
first and second moments is more likely to result in aworks. InNIPS 2012.

stable distribution. On the contrary, (Gilcehre & Bengio

2013) apply the standardization layer to thetputof the Desjardins, Guillaume and Kavukcuoglu, Koray. Natural
nonlinearity, which results in sparser activations. In our neural networks. (unpublished).

large-scale image classification experiments, we have not

observed the nonlinearitgputsto be sparse, neither withDuchi, John, Hazan, Elad, and Singer, Yoram. Adaptive
nor without Batch Normalization. Other notable differ- subgradient methods for online learning and stochastic

optimization.J. Mach. Learn. Res12:2121-2159, July Saxe, Andrew M., McClelland, James L., and Ganguli,
2011. ISSN 1532-4435. Surya. Exact solutions to the nonlinear dynamics

of learning in deep linear neural networksCoRR
Gulgehre, Caglar and Bengio, Yoshua. Knowledge mat-gbs/1312.6120, 2013.
ters: Importance of prior information for optimization.
CoRR abs/1301.4083, 2013. Shimodaira, Hidetoshi. Improving predictive inference
under covariate shift by weighting the log-likelihood
He, K., Zhang, X., Ren, S., and Sun, J. Delving Deep function.Journal of Statistical Planning and Inference
into Rectifiers: Surpassing Human-Level Performance90(2):227-244, October 2000.

on ImageNet ClassificationArXiv e-prints February N _)
2015. Srivastava, Nitish, Hinton, Geoffrey, Krizhevsky, Alex,

Sutskever, llya, and Salakhutdinov, Ruslan. Dropout:
Hyvarinen, A. and Oja, E. Independent component anal-A simple way to prevent neural networks from overfit-
ysis: Algorithms and applicationsNeural Netw, 13 ting. J. Mach. Learn. Res15(1):1929-1958, January
(4-5):411-430, May 2000. 2014.

Jiang, Jing. A literature survey on domain adaptation 8ttskever, llya, Martens, James, Dahl, George E., and
statistical classifiers, 2008. Hinton, Geoffrey E. On the importance of initial-

ization and momentum in deep learning. IGML
LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (3), volume 28 ofIMLR Proceedingspp. 1139-1147.
Gradient-based learning applied to document recog-JMLR.org, 2013.

nition. Proceedings of the IEEEB6(11):2278-2324, . , ool .
November 1998a. Szegedy, Christian, Liu, Wei, Jia, Yangqging, Sermanet,

Pierre, Reed, Scott, Anguelov, Dragomir, Erhan, Du-
LeCun, Y., Bottou, L., Orr, G., and Muller, K. Efficient Mitru, Vanhoucke, Vincent, and Rabinovich, An-
backprop. In Orr, G. and K., Muller (edsNeural Net- ~ drew. Going deeper with convolutions. CoRR
works: Tricks of the tradeSpringer, 1998b. abs/1409.4842, 2014.

Wiesler, Simon and Ney, Hermann. A convergence anal-
tion using divisive normalization. IProc. Computer YSiS Of log-linear training. In Shawe-Taylor, J., Zemel,
Vision and Pattern Recognitiomp. 1-8. IEEE Com- R.S., Bartlett, P., Pereira, F.C.N., and Weinberger, K.Q.

puter Society, Jun 23-28 2008. doi: 10.1109/CVPR. (eds.) Advances in Neural Information Processing Sys-
2008.4587821. tems 24pp. 657—-665, Granada, Spain, December 2011.

Lyu, S and Simoncelli, E P. Nonlinear image represen

Nair, Vinod and Hinton, Geoffrey E. Rectified Iinearunitg\/'eSIer’ Simon, Richard, AIexan_der, Schluter,_ Ralf, a_md
Ney, Hermann. Mean-normalized stochastic gradient

improve restricted boltzmann machines.IGML, pp. . .
P PP for large-scale deep learning. IEEE International

807-814. Omnipress, 2010. Conference on Acoustics, Speech, and Signal Process-

Pascanu, Razvan, Mikolov, Tomas, and Bengio, YoshuaNd: PP- 180-184, Florence, ltaly, May 2014.

On the difficulty of training recurrent neural networksWu Ren, Yan, Shengen, Shan, Yi, Dang, Qingging, and
In Proceedings of the 30th International Conference on éun G’ang ’Deep imag;e' Sca{ling; up imélge recogn’ition

Machine Learning, ICML 2013, Atlanta, GA, USA, 16- 2015
21 June 2013pp. 1310-1318, 2013. '

Povey, Daniel, Zhang, Xiaohui, and Khudanpur, San-
jeev. Parallel training of deep neural networks witAppendiX
natural gradient and parameter averagingCoRR
abs/1410.7455, 2014. Variant of the Inception Model Used

Raiko, Tapani, Valpola, Harri, and LeCun, Yann. Deepigure[5 documents the changes that were performed
learning made easier by linear transformations in pglompared to the architecture with respect to the
ceptrons. Irinternational Conference on Artificial In- GoogleNet archictecture. For the interpretation of this
telligence and Statistics (AISTATSp. 924-932, 2012. taple, please consult (Szegedy €tlal., 2014). The notable

. architecture changes compared to the GoogLeNet model
Russakovsky, Olga, Deng, Jia, Su, Hao, Krause, Jonathagy,de:

Satheesh, Sanjeev, Ma, Sean, Huang, Zhiheng, Karpa-

thy, Andrej, Khosla, Aditya, Bernstein, Michael, Berg, e The 5x5 convolutional layers are replaced by two
Alexander C., and Fei-Fei, Li. ImageNet Large Scale consecutive 3 convolutional layers. This in-
Visual Recognition Challenge, 2014. creases the maximum depth of the network by 9

weight layers. Also it increases the number of pa-
rameters by 25% and the computational cost is in-
creased by about 30%.

e The number 2828 inception modules is increased
from 2 to 3.

¢ Inside the modules, sometimes average, sometimes
maximum-pooling is employed. This is indicated in
the entries corresponding to the pooling layers of the
table.

e There are no across the board pooling layers be-
tween any two Inception modules, but stride-2 con-
volution/pooling layers are employed before the fil-
ter concatenation in the modules 3c, 4e.

Our model employed separable convolution with depth
multiplier 8 on the first convolutional layer. This reduces
the computational cost while increasing the memory con-
sumption at training time.

10

atch size/ output 3x3 double #3 %3 .
type i stride sise depth | #1x1 :gduce #3%3 redu#ée d;gglg Pool +proj
convolution* TXT/2 112x112x64 1
max pool 3x3/2 56 %56 x 64 0
convolution 3x3/1 56x56x192 1 64 192
max pool 3x3/2 28x28x192 0
inception (3a) 28 x 28 x 256 3 64 64 64 64 96 avg + 32
inception (3b) 28 x 28 x 320 3 64 64 96 64 96 avg + 64
inception (3c) stride 2 28x28x576 3 0 128 160 64 96 max + pass through
inception (4a) 14x14x576 3 224 64 96 96 128 avg + 128
inception (4b) 14x14x576 3 192 96 128 96 128 avg + 128
inception (4c) 14x14x576 3 160 128 160 128 160 avg + 128
inception (4d) 14x14x576 3 96 128 192 160 192 avg + 128
inception (4e)| stride 2 14x14x1024 3 0 128 192 192 256 max + pass through
inception (5a) Tx7x1024 3 352 192 320 160 224 avg + 128
inception (5b) Tx7%x1024 3 352 192 320 192 224 max + 128
avg pool TXT7/1 1x1x1024 0

Figure 5: Inception architecture

11

	1 Introduction
	2 Towards Reducing Internal Covariate Shift
	3 Normalization via Mini-Batch Statistics
	3.1 Training and Inference with Batch-Normalized Networks
	3.2 Batch-Normalized Convolutional Networks
	3.3 Batch Normalization enables higher learning rates
	3.4 Batch Normalization regularizes the model

	4 Experiments
	4.1 Activations over time
	4.2 ImageNet classification
	4.2.1 Accelerating BN Networks
	4.2.2 Single-Network Classification
	4.2.3 Ensemble Classification

	5 Conclusion

