
Incorporating Software Engineering
into Instrumentation Teams

GRD Seminar
November 5th 2020

Chris Moriarty

Motivation

• Science and Software have become inseparable
• Software Engineering is separate though, for now ;)
• Complex systems require more than “someone to finish the software later”

• Instrumentation software control systems are challenging
• Developing code for constantly changing hardware is difficult
• Safely operating expensive systems is paramount
• Many systems just end up growing organically into spaghetti code

• Some software design, and best practices can go a long way
• There are often barriers in the way of doing this though

Historical Barriers

The Nature of New Projects & Missions

• New projects are often started with only science folks on the team
• Proposals generally don’t emphasize software design or funding

• Initial development often done without software engineers
• Crucially misses design and requirements

• Success defined by publishing single results, rather than reliable,
repeatable results.

• Complex and unstable systems
• “Ok, now maybe we should hire some software people”

• Not enough funding to hire additional software support

Staffing Grad students & Post Docs

• By no fault of their own are driven by “Science First”
• Incentive for honing software skills is often low
• Software skills don’t publish papers -> doesn’t progress science career
• Often treated as a hobby for one to pursue on their own time

• Turnover
• Term limited staff will inevitably leave
• Science leaves with them, which is the norm in the science world
• Systems knowledge of complex code leaves the project too

• The team will have to ramp someone new up
• Bugs and problems will go unfixed, potentially blocking other efforts

Institutional hurdles

• Institutes and Observatories often separate engineering and science
• Teams tend to be either all science people, or all engineering people
• Standards set in one team aren’t adopted elsewhere

• Uncoordinated silo development
• Instrumentation teams particularly suffer from this model

• Which almost always require a diverse collaborative team

• Software often viewed as a service
• Since teams are separated and uncoordinated, close integration is more difficult

• Even pure engineering teams often end up with science managers
• Its not always obvious how to share resources between divisions
• Changing an organization’s culture is hard and takes time

First steps to get passed barriers

• Incorporate realistic software budget into proposals
• Consult software engineering collaborators

• Conduct software design study early and iteratively develop with hardware
• Treat both as a single system

• Create team standards, documentation, and onboarding process
• Less of a hit when students and post docs leave project

• Build a software friendly culture
• Support and advertise software and management training when available
• Go to software conferences too

High-contrast imager for Complex Aperture
Telescopes (HiCAT)

In the beginning…

• Stalled project, 4 years of development, no results, low funding
• Strategically proposed for director’s discretionary funds

• Happened to knock on Remi’s door with a crazy idea
• Shaped the proposal to be a collaboration between divisions

• Became the first STScI software engineer to work on a DD project
• Tried to change my title and lower my salary
• Was told there may not be a position for me when the DD ends
• Decided to be the guinea pig

• Software system was a complete MESS!
• Matlab, LabVIEW, Mathematica, C++, oh my!

Initial Core HiCAT DD Team

• PI – Expert in high contrast imaging
• Senior Software Engineer with no experience in optics
• Part time Senior Hardware Engineer with lots of experience
• Part time IT administrator
• Part time science staff with optics and data processing experience

Road to a dark zone

• Found and moved all code into version control
• Re-wrote entire software control system in Object Oriented Python
• Trained entire lab in git, conda, and Jira
• Took a class on fourier transforms at JHU
• Developed a realtime data pipeline
• Incorporated a simple darkzone algorithm (speckle nulling)
• Began project management using proposal and paper deadlines
• Automated control and safety checks
• Created a queueing system for overnight and weekend experiments

“The software infrastructure he has designed is totally unique and I believe
unheard of in our field” -Rémi Soummer

HiCAT Debrief

• Diverse team covering IT, Hardware, Software and Science Theory
• Software budget in proposal
• Software best practices

• Ditched spaghetti code - > Object oriented design
• Version control

• Cross training science theory, optics, project mgmt and software
• Onboarding documentation
• Expresso machine J

