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Background 

What is focal plane wavefront sensing? 
Why do we use it? 
How is it implemented with a vAPP coronagraph? 
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Vector Apodizing Phase Plate
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Standard Closed-Loop Adaptive Optics System
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Standard Closed-Loop Adaptive Optics System

Diagram credit: BMC 

Pupil Plane 
Coronagraph

Pupil Plane 
Coronagraph

Solution: Use the science 
image as a secondary 
wavefront sensor which is 
fully common path and can 
sense non-common path 
aberrations and maintain 
deep contrast in the dark hole

Primary 
Wavefront 

Sensor

Focal 
Plane 

Wavefront 
Sensor

Secondary Wavefront Sensor: 
Coronagraphic Science Image

Vector Apodizing Phase Plate



13

Standard Closed-Loop Adaptive Optics System

Diagram credit: BMC 

Pupil Plane 
Coronagraph

Pupil Plane 
Coronagraph

Solution: Use the science 
image as a secondary 
wavefront sensor which is 
fully common path and can 
sense non-common path 
aberrations and maintain 
deep contrast in the dark hole

Primary 
Wavefront 

Sensor

Focal 
Plane 

Wavefront 
Sensor

Secondary Wavefront Sensor: 
Coronagraphic Science Image

Science Image with 
NCPA Correction

Vector Apodizing Phase Plate



14
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Vector Apodizing Phase Plate

Half-wave retarder pupil plane optic with a spatially varying fast-axis orientation.  The 
varying fast-axis orientation induces a geometric phase on the circular polarization states, 
each of which receives the opposite phase.  This creates two coronagraphic PSFs with dark 
holes on opposite sides.  The two PSFs are separated by adding a ramp function to the 
phase pattern.  (Bos et al 2019) (Image courtesy of D. Doelman) 



Linear Dark Field Control 

How does it work?  
How do we implement it with a vAPP? 



17

Linear Dark Field Control

Purpose: 
To sense and correct high-order, non-common 

path aberrations that degrade the deep 
contrast within the dark hole 



18

Linear Dark Field Control
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Dark Holes 

Dark Hole Response in 
Intensity to Pupil Plane Poke:

Quadratic 

Linear Dark Field Control
(Miller et al 2017) 
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Bright Field Response in 
Intensity to Pupil Plane Poke:

Linear 

Linear Dark Field Control
(Miller et al 2017) 

Bright Field Operation:
 Uses the bright field opposite the 
dark hole to measure fluctuations 

in intensity with respect to an 
ideal reference image and 

derive an estimate of the 
wavefront aberration
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Linear Dark Field Control

(Miller et al 2020, In-prep) 

Results of the non-linear WFS algorithm (Bos et al 2019) used to remove static, 
low-order instrumental NCPA and derive a clean reference image for LDFC

Deriving a reference image
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Linear Dark Field Control
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Linear Dark Field Control
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Eigenmodes
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Linear Dark Field Control

Selecting Eigenmodes

(Miller et al 2020, In-prep) 

Modal selection process: Suppressing noisy modes with Tikhonov regularization in 
the derivation of the control matrix and applying modal gain to give greater 
weight to less noisy modes



LDFC with a vAPP on SCExAO 
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LDFC with a vAPP on SCExAO

Extreme AO system 
on 8.2m Subaru Telescope 

Primary AO: Pyramid WFS  running @ ~3.5 kHz
Deformable mirror: BMC 2K
Coronagraph: vector apodizing 
phase plate (among others) 
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Focal plane image Pupil plane vAPP 

(Bos et al 2019) 

LDFC with a vAPP on SCExAO
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(Miller et al 2020, In-prep) 

LDFC with a vAPP on SCExAO
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(Miller et al 2020, In-prep) 

LDFC with a vAPP on SCExAO
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(Miller et al 2020, In-prep) 

LDFC with a vAPP on SCExAO
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(Miller et al 2020, In-prep) 

LDFC with a vAPP on SCExAO
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(Miller et al 2020, In-prep) 

LDFC with a vAPP on SCExAO
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Upcoming Results

Papers
Spatial linear dark field control on Subaru/SCExAO: Maintaining high 
contrast with a vAPP coronagraph
Miller & Bos et al, Submitted

First on-sky demonstration of spatial linear dark field control with the 
vector apodizing phase plate at Subaru/SCExAO
Bos & Miller et al, In – Prep

Talks
On-sky results of focal-plane wavfront sensing and control with the 
asymmetric pupil vector-apodizing phase plate coronagraph
Steven Bos, SPIE Astronomical Telescopes and Instrumentation 2020 
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