

A LGSWFS prototype for the ELT

Zibo KE

14/01/2021

Supervisors: NEICHEL Benoit FUSCO Thierry

PhD time: 30/09/2018 - 30/09/2021

Research background

Elongation on the detector

Research background

25"

2000x2000 pixels detector, running at 500Hz, with RON<3e- does not exist...

We study the possibility to use SONY-CMOS detectors with: 1100x1100pixels RON<3e-Fps = 480Hz Global shutter

Ideally, we need subapertures with 25x25 pixels of ~1" /pixel

For 80x80 subapertures, we need 2000 x 2000 pixels

The work is to develop a prototype to experimentally validate a full-scale version of a LGSWFS for the ELT

Current work

Detector characterization AO Simulation for shutter impact

Noise analysis

Angle of acceptance

Centroids variation

Open loop

Close loop

Photon transfer curve

$$\sigma_{I_{\mathrm{ADU}}}^2 = \frac{1}{g} \cdot S_{\mathrm{ADU}} + \sigma_{R_{\mathrm{ADU}}}^2,$$

Uniform source

Dark frames without source

High Flux

Noise analysis

Pixel variance

Photon noise (PN)

Testing Centroiding accuracy vs. different level of flux

Low Flux

flux

Medium Flux

7

Noise analysis

Photon + Read-out noise (PN + RON)

COG Theory

Angle of acceptance

□ Measurement of Center of Gravity (CoG) as a function of spot lateral **displacement** (x), incident angle(θ), and spot size (δ).

$$CoG(x;\theta,\delta) = A(\theta) x + B(\theta) + \alpha(\delta) \sin(\beta x + \gamma)$$

Linear fit

Residuals

Residuals (δ =1.1 pixels)

Residuals (δ =1.3 pixels)

Centroids variation

Residuals (δ =1.2 pixels)

CCD (global shutter)

ADC

CMOS (global shutter)

subapertures=10x10, resolutions=80x80;

centroids

70

Global shutter vs. Rolling shutter

Open loop

Rms(phRef)=299 nm (3.4 rad)

Rms(phGS-phRef)=0.4 nm (0.005 rad)

\rightarrow 0.15 %

Rms(phRS-phRef)=5.6 nm (0.064 rad)

$\rightarrow 2\%$

-5

-10

OL error for GS and RS scheme as a function of wind Speed

$$rms(\varphi) = \sqrt{\frac{1}{\sum_{x} \sum_{y} Pup(x,y)} \sum_{x} \sum_{y} (\varphi(x,y))^{2}}$$

The schematic diagram of creating GS & RS phase

Close loop

Close Loop error for GSvsRef / RSvsRef 10x10 sub-apertures - 8x8 pixels / r0 = 50cm ------------------------GS-Ref Ref GS **RS-Ref** RS err in 10 8 Number of Iteration Number of Iteration

Aix*Marseille

Close loop

LABORATOIRE D

DE MARSEILL

Single gain, single wind direction, multi wind speed

19

Close loop

Single gain, multi wind direction, single wind speed

Close loop

Multi gain, single wind direction, single wind speed

Conclusions

Sensor characterization

Angle of acceptance

Centroids variations

AO Simulation for shutter impact

Thank you for your attention