Hyperspectral remote sensing data analysis using deep learning

<u>Nicolas Audebert</u>

Séminaire MLDL @ LAM – 1 Feb. 2021

Multispectral imaging and why we use it

Multispectral imaging for remote sensing

Remote sensing

Airborne or spaceborne sensors, e.g. cameras/radars mounted on planes and satellites.

Multispectral imaging

Visible wavelengths are not always the most interesting. ESA/**Sentinel-2** constellation uses a camera that "sees" through 12 wavelengths carefully chosen.

Seeing the invisible

Visible light

Seeing the invisible

Water vapour (\simeq clouds)

Seeing the invisible

Vegetation "red edge"

Why is multi/hyperspectral imaging useful?

Mean spectra from the Pavia Center dataset

What is an hyperspectral image? Hyperspectral cameras acquire light intensities for hundreds of wavelengths \rightarrow one pixel = one spectrum \rightarrow see invisible things for the human eye

Why do we use hyperspectral imaging?

Different materials have different **spectral signatures** that can be measured through an hyperspectral sensor.

→ huge discriminative power for land
 cover mapping, health vegetation
 monitoring, plastic recycling, etc.

Multi or hyper? Spectral resolution matters

Multispectral : a few bands with irregular widths

Basics of convolutional neural networks

(Convolutional) neural networks

Stack of **optimizable** convolutional kernels learnt via **gradient descent** \rightarrow similar to wavelet decomposition but using a learnt kernel set

Gradient-based learning applied to document recognition, LeCun et al., 1998

Objective function

Minimize the "error" on some samples (the train set), e.g. :

- Regress some quantity (% of water, building height...)
- Classify the sample into some categories (forest, building, crop., j_{12}

An example : extracting buildings from aerial images

Objective : for every pixel, predict if it belongs to a building or not (*binary classification*)

Slide a window on the image, for each patch, apply the model on the relevant pixels.

Training a neural network

- f_{θ} be the NN function with θ the parameters of the NN (its *weights*),
- X the training samples and y their labels,
- + \mathcal{L} the loss function (quantifies the errors between NN prediction and the truth).

Examples of $\mathcal L$: MSE, Kullback-Leibler div., anything differentiable...

- **Gradient descent : repeat until bored or** $\mathcal{L}(y, \hat{y})$ **stops decreasing** 1. For step *i*, select at random some $x_i \in X$.
 - 2. Compute NN predictions $\hat{y} = f_{\theta}(x_i)$.
 - 3. Compute the "loss" $\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}})$.
 - 4. Compute gradient of loss w.r.t. the weights : $\nabla_{\theta}(\mathcal{L}) \leftarrow$ we use the chain rule to "backpropagate" the gradient value into the network
 - 5. Update the weights : $\theta' \leftarrow \theta \alpha \nabla_{\theta}(\mathcal{L})$ α controls the "*learning rate*" (how much we update

Training a neural network

- f_{θ} be the NN function with θ the parameters of the NN (its *weights*),
- X the training samples and y their labels,
- \mathcal{L} the loss function (quantifies the errors between NN prediction and the truth). \leftarrow we want to minimize this

Examples of $\mathcal L$: MSE, Kullback-Leibler div., anything differentiable...

Gradient descent : repeat until bored or $\mathcal{L}(y, \hat{y})$ **stops decreasing** 1. For step *i*, select at random some $x_i \in X$.

- 2. Compute NN predictions $\hat{y} = f_{\theta}(x_i)$.
- 3. Compute the "loss" $\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}})$.
- 4. Compute gradient of loss w.r.t. the weights : $\nabla_{\theta}(\mathcal{L}) \leftarrow$ we use the chain rule to "backpropagate" the gradient value into the network
- 5. Update the weights : $\theta' \leftarrow \theta \alpha \nabla_{\theta}(\mathcal{L})$ α controls the "*learning rate*" (how much we update

Training a neural network

- f_{θ} be the NN function with θ the parameters of the NN (its *weights*),
- X the training samples and y their labels,
- *L* the loss function (quantifies the errors between NN prediction and the truth). ← we want to minimize this

Examples of $\mathcal L$: MSE, Kullback-Leibler div., anything differentiable...

Gradient descent : repeat until bored or $\mathcal{L}(y, \hat{y})$ stops decreasing

- 1. For step *i*, select at random some $x_i \in X$.
- 2. Compute NN predictions $\hat{y} = f_{\theta}(\mathbf{x}_i)$.
- 3. Compute the "loss" $\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}})$.
- 4. Compute gradient of loss w.r.t. the weights : $\nabla_{\theta}(\mathcal{L}) \leftarrow$ we use the chain rule to "backpropagate" the gradient value into the network
- 5. Update the weights : $\theta' \leftarrow \theta \alpha \nabla_{\theta}(\mathcal{L})$ α controls the "learning rate" (how much we update the weights)

Applying deep learning on hyperspectral data

Deep learning for hyperspectral image processing is difficult

How to choose a model?

New papers and neural architectures are published every week.

≡	Google Scholar	deep learning hyperspectral	Q
•	Articles	Environ 22100 résultats (0,16 s)	
\rightarrow	Date indifférente Depuis 2020 Depuis 2019 Depuis 2016 Période spécifique	Deep learning for hyperspectral image classification: An overview <u>S Li, W Song, L Fang, Y Chen,, on</u> Geoscience and, 2019 - leeexplore.leee.org Hyperspectral image (HSI) classification has become a hot topic in the field of remote sensing. In general, the complex characteristics of hyperspectral data make the accurate classification of such data challenging for traditional machine learning methods. In addition c_{0}^{A} OG Cité 122 fois Autres articles Les 3 versions	

Processing hyperspectral data is difficult...

- Hyperspectral cameras are costly and low spatial resolution
- Large gap between RGB and hyperspectral
- Annotated hyperspectral datasets are very small
 - \rightarrow Indian Pines (hyperspectral) = 1 image of 21,025 pixels
 - \rightarrow ImageNet (photos) = 1 million 224 \times 224 images

Supervised learning : loss function depends on external labels (e.g. from manual human annotations) :

 $\mathcal{L}_{\theta}:(x,y)\to\mathcal{L}(f_{\theta}(x),y)$

- © Perfect for most tasks (classification, regression) where we have a target we want to predict
- ③ Requires external labels that can be hard to obtain

Unsupervised learning : loss function depends only on data

 $\mathcal{L}_{\theta}: x \to \mathcal{L}(f_{\theta}(x), x)$

- © Great to learn representations without prior, can replace traditional dimension reduction algorithms (e.g. PCA)
- $\odot\,$ No labels means less possibilities regarding what can be learnt

Learning to compress : the autoencoder

https: //www.compthree.com/blog/autoencoder/ A two-part neural network : encoder + decoder

- Encoder : maps the input $x \in \mathbb{R}^n$ into a vector $z \in \mathbb{R}^m$. We assume $k \ll n$.
- Decoder : maps z to a
 "decoded" output x̂ of same
 size as x.

Train the net to minimize the reconstruction error $||x - \hat{x}||^2$

Spectral classification : 1D CNN

• 1D convolutional kernels are applied on the spectral dimension

Deep CNN for Hyperspectral Image Classification, Hu et al., 2015

Strengths

Weaknesses

- ③ Simple, fast
- Scale from tens to hundreds of wavelengths
- So spatial awareness

Spatial-spectral classification : 2D+1D

2D+1D approaches

Reduce spectral dimension to only a few bands + 2D CNN

- Unsupervised reduction : PCA, autoencoder...
- Supervised reduction : alternate 2D and 1D convolutions

Deep supervised learning for hyperspectral data classification through CNN, Makantasis et al., 2015

Strengths

- © Can reuse RGB models
- ☺ Can learn spatial patterns

Weaknesses

- \odot Shoehorning the problem
- Unefficient use of spectral information

Spatial-spectral classification : 3D

3D approaches

End-to-end 3D pattern recognition : apply learnable (w, h, B) filters on the hypercube

Deep Feature Extraction and Classification of Hyperspectral Images Based on CNN, Chen et al., 2016

Strengths

- © Superior on-paper abilities
- © Spatial-spectral patterns!

Weaknesses

Study case : Pavia University

Dataset

Hyperspectral image of the University of Pavia (Italy) : 103 bands, 610×610 px, 1px=1.3m (courtesy of Prof. Paolo Gamba).

Left to right : color image, 1D SVM, 3D CNN, ground truth.

one color = one class (meadows, bare soil, metal sheets...)

Choosing a model or how not to drown in the state of the art

Validating my architecture

- Choose a public dataset (e.g. Pavia University, Indian Pines...)
- Split the dataset between train/test/validation
- Compare my accuracy with the state-of-the-art

It is easy to get it wrong

- Random splitting of train/test sets is unrealistic
- Different authors do not always consider the same classes
- Hyperparameters tuning is sometimes done directly on the test set
 → this results in optimistic performances since we overfit the
 model on test data...

Choosing a model or how not to drown in the state of the art

Random train/test

Disjoint train/test

It is easy to get it wrong

- Random splitting of train/test sets is unrealistic
- Different authors do not always consider the same classes
- Hyperparameters tuning is sometimes done directly on the test set
 → this results in optimistic performances since we overfit the
 model on test data...

Some guidelines

Designing my network : keeping it simple

- Start small, add layers until it starts overfitting
- Don't reinvent the wheel, use proofed optimizers (SGD, Adam...)
- Not enough data : create some more! ← data augmentation can significantly improve your models

Validating the model

- Keep your test set hidden so that you can evaluate your model on new data ← measure generalization, not memorization
- Be skeptical of too-good-to-be-true results, e.g. 99% accuracy...
- Be careful on any spurious correlation or info leak that could defeat your objective

A unified toolbox : DeepHyperX

https://github.com/nshaud/DeepHyperX

Deep Learning for Classification of Hyperspectral Data : A Comparative Review, Audebert et al., 2018

WIP with J.-F. Robitaille and I. Joncour (IPAG) to adapt the toolbox to astro data! 17/18

Conclusion

- Multispectral and hyperspectral imaging is a great tool for **fine-grained characterization** of objects and surfaces.
- Deep learning and convolutional neural networks are very strong for image classification but hyperspectral cubes are not the same as color images.
- $\rightarrow\,$ Yet, we can manage using 3D neural networks to capture spatial-spectral patterns in the data.
 - Many models have been published but no clear winner yet.
 - Since datasets are small and scarce, extra care should be taken to ensure the validity of the results.
- \rightarrow DeepHyperX tries to provide a collection of sate-of-the-art models inside the same toolbox for easier use.