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Multispectral imaging and why we
use it



Multispectral imaging for remote sensing

Remote sensing
Airborne or spaceborne sensors, e.g. cameras/radars mounted on
planes and satellites.

Multispectral imaging
Visible wavelengths are not always the most interesting.
ESA/Sentinel-2 constellation uses a camera that “sees” through 12
wavelengths carefully chosen.
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Seeing the invisible

Visible light
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Seeing the invisible

Water vapour (≃ clouds)
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Seeing the invisible

Vegetation “red edge”
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Why is multi/hyperspectral imaging useful ?

What is an hyperspectral image?
Hyperspectral cameras acquire light
intensities for hundreds of wavelengths
→ one pixel = one spectrum→ see
invisible things for the human eye

Why do we use hyperspectral imaging?
Different materials have different
spectral signatures that can be
measured through an hyperspectral
sensor.
→ huge discriminative power for land
cover mapping, health vegetation
monitoring, plastic recycling, etc.
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Multi or hyper? Spectral resolution matters

Multispectral : a few bands with irregular widths

1mm
Infrared

800nm
Visible

400nm
Ultraviolet

10nm

Band 1 2 3 4 5 6

Hyperspectral : several dozen bands of identical width
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Basics of convolutional neural
networks



(Convolutional) neural networks

Stack of optimizable convolutional kernels learnt via gradient descent
→ similar to wavelet decomposition but using a learnt kernel set

Gradient-based learning applied to document recognition, LeCun et al., 1998

Objective function
Minimize the “error” on some samples (the train set), e.g. :
• Regress some quantity (% of water, building height…)
• Classify the sample into some categories (forest, building, crop…).5/18



An example : extracting buildings from aerial images

Objective : for every pixel, predict if it belongs to a building or not
(binary classification)

Slide a window on the image, for each patch, apply the model on the relevant pixels.
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Training a neural network

• fθ be the NN function with θ the parameters of the NN (its weights),
• X the training samples and y their labels,
• L the loss function (quantifies the errors between NN prediction
and the truth).

Examples of L : MSE, Kullback-Leibler div., anything differentiable…
Gradient descent : repeat until bored or L(y, ŷ) stops decreasing
1. For step i, select at random some xi ∈ X.
2. Compute NN predictions ŷ = fθ(xi).
3. Compute the “loss” L(y, ŷ).
4. Compute gradient of loss w.r.t. the weights : ∇θ(L)← we use the

chain rule to “backpropagate” the gradient value into the network
5. Update the weights : θ′ ← θ − α∇θ(L)

α controls the “learning rate” (how much we update the weights)
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Applying deep learning on
hyperspectral data



Deep learning for hyperspectral image processing is difficult

How to choose a model?
New papers and neural architectures are published every week.

Processing hyperspectral data is difficult…
• Hyperspectral cameras are costly and low spatial resolution
• Large gap between RGB and hyperspectral
• Annotated hyperspectral datasets are very small
→ Indian Pines (hyperspectral) = 1 image of 21,025 pixels
→ ImageNet (photos) = 1 million 224× 224 images 8/18



Unsupervised/supervised learning

Supervised learning : loss function depends on external labels (e.g.
from manual human annotations) :

Lθ : (x, y)→ L(fθ(x), y)

, Perfect for most tasks (classification, regression) where we have a
target we want to predict

/ Requires external labels that can be hard to obtain

Unsupervised learning : loss function depends only on data

Lθ : x→ L(fθ(x), x)

, Great to learn representations without prior, can replace
traditional dimension reduction algorithms (e.g. PCA)

/ No labels means less possibilities regarding what can be learnt
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Learning to compress : the autoencoder

https:
//www.compthree.com/blog/autoencoder/

A two-part neural network :
encoder + decoder

• Encoder : maps the input
x ∈ Rn into a vector z ∈ Rm. We
assume k << n.

• Decoder : maps z to a
“decoded” output x̂ of same
size as x.

Train the net to minimize the
reconstruction error ||x− x̂||2
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Spectral classification : 1D CNN

• 1D convolutional kernels are applied on the spectral dimension
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Deep CNN for Hyperspectral Image Classification, Hu et al., 2015

Strengths
, Simple, fast
, Scale from tens to hundreds of

wavelengths

Weaknesses
/ No spatial awareness
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Spatial-spectral classification : 2D+1D

2D+1D approaches
Reduce spectral dimension to only a few bands + 2D CNN
• Unsupervised reduction : PCA, autoencoder…
• Supervised reduction : alternate 2D and 1D convolutions
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Deep supervised learning for hyperspectral data classification through CNN, Makantasis et al., 2015

Strengths
, Can reuse RGB models
, Can learn spatial patterns

Weaknesses
/ Shoehorning the problem
/ Unefficient use of spectral

information
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Spatial-spectral classification : 3D

3D approaches
End-to-end 3D pattern recognition : apply learnable (w,h,B) filters on
the hypercube
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Deep Feature Extraction and Classification of Hyperspectral Images Based on CNN, Chen et al., 2016

Strengths
, Superior on-paper abilities
, Spatial-spectral patterns !

Weaknesses
/ Can be slower→ there are

tricks to avoid this 13/18



Study case : Pavia University

Dataset
Hyperspectral image of the University of Pavia (Italy) : 103 bands,
610× 610px, 1px=1.3m (courtesy of Prof. Paolo Gamba).

Left to right : color image, 1D SVM, 3D CNN, ground truth.

one color = one class (meadows, bare soil, metal sheets…) 14/18



Choosing a model or how not to drown in the state of the art

Validating my architecture

• Choose a public dataset (e.g. Pavia University, Indian Pines…)
• Split the dataset between train/test/validation
• Compare my accuracy with the state-of-the-art

It is easy to get it wrong

• Random splitting of train/test sets is unrealistic
• Different authors do not always consider the same classes
• Hyperparameters tuning is sometimes done directly on the test set
→ this results in optimistic performances since we overfit the
model on test data…
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Some guidelines

Designing my network : keeping it simple
• Start small, add layers until it starts overfitting
• Don’t reinvent the wheel, use proofed optimizers (SGD, Adam…)
• Not enough data : create some more !← data augmentation can
significantly improve your models

Validating the model
• Keep your test set hidden so that you can evaluate your model on
new data← measure generalization, not memorization

• Be skeptical of too-good-to-be-true results, e.g. 99% accuracy…
• Be careful on any spurious correlation or info leak that could
defeat your objective
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A unified toolbox : DeepHyperX

https://github.com/nshaud/DeepHyperX
Deep Learning for Classification of Hyperspectral Data : A Comparative Review, Audebert et al., 2018

WIP with J.-F. Robitaille and I. Joncour (IPAG) to adapt the toolbox to astro data ! 17/18
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Conclusion

• Multispectral and hyperspectral imaging is a great tool for
fine-grained characterization of objects and surfaces.

• Deep learning and convolutional neural networks are very strong
for image classification but hyperspectral cubes are not the same
as color images.

→ Yet, we can manage using 3D neural networks to capture
spatial-spectral patterns in the data.

• Many models have been published but no clear winner yet.
• Since datasets are small and scarce, extra care should be taken to
ensure the validity of the results.

→ DeepHyperX tries to provide a collection of sate-of-the-art models
inside the same toolbox for easier use.
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