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Problem: Noise in the AO Loop
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Closed-loop Adaptive Optics
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Closed-loop Adaptive Optics

𝑆𝑥 =
σ𝑥(σ𝑦 𝐼 𝑥,𝑦 )𝑥

σ𝑥 σ𝑦 𝐼 𝑥,𝑦
; 𝑆𝑦 =

σ𝑦(σ𝑥 𝐼 𝑥,𝑦 )𝑦

σ𝑥 σ𝑦 𝐼 𝑥,𝑦

1. Process WFS info with Center of gravity (cog) 
method.

𝑚 = (𝑆𝑥1 , 𝑆𝑥2 , … , 𝑆𝑥𝑛 , 𝑆𝑦1 , 𝑆𝑦2 , … , 𝑆𝑦𝑛)
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Closed-loop Adaptive Optics

𝐶𝑡 = 𝐶𝑡−1 − 𝑔𝑐

𝑐 = 𝑅 𝑚

2. Integrator with gain

• Reduce error by integrating past commands:

• Commands that should be applied:
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Noise in wavefront sensor subapertures

cog=(-0.008, -0.028)

b) Noise in the subaperture image.

cog=(0.367, -0.018)

a) Noise free WFS subaperture image. 

We treat the two main sources of noise in AO:

1. Readout noise on the subaperture detectors.
2. Shot noise due to photon statistics.
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Solution: Denoising Autoencoder
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Autoencoder (LeCun 1987, Bourlard and Kamp, 1988, Hinton and Zemel 1994)

1. Unsupervised learning method based on neural networks.
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Autoencoder (LeCun 1987, Bourlard and Kamp, 1988, Hinton and Zemel 1994)

1. Unsupervised learning method based on neural networks.

2. Learn a function 𝑓𝜃 with parameters 𝜃 to reconstruct input.
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Autoencoder (LeCun 1987, Bourlard and Kamp, 1988, Hinton and Zemel 1994)

1. Unsupervised learning method based on neural networks.

2. Learn a function 𝑓𝜃 with parameters 𝜃 to reconstruct input.

3. Minimize the loss 𝐿(𝜃) = 𝑥 − 𝑟 2
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Autoencoder (LeCun 1987, Bourlard and Kamp, 1988, Hinton and Zemel 1994)

1. Unsupervised learning method based on neural networks.

2. Learn a function 𝑓𝜃 with parameters 𝜃 to reconstruct input.

3. Minimize the loss 𝐿(𝜃) = 𝑥 − 𝑟 2

4. Applications:
• Dimensionality reduction.
• Pretraining other networks.
• Denoising.
• Anomaly detection.
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Denoising Autoencoder (Vincent et al. 2008)

1. Problem of Autoencoder: 𝑓𝜃 can just become the identity function.



15

Denoising Autoencoder (Vincent et al. 2008)

1. Problem of Autoencoder: 𝑓𝜃 can just become the identity function.
2. Solution: corrupt the input, 𝑥 ∼ ො𝑥, so it learns a map to noise corrupted input to noise free 

reconstructed output.
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Denoising Autoencoder (Vincent et al. 2008)

1. Problem of Autoencoder: 𝑓𝜃 can just become the identity function.
2. Solution: corrupt the input, 𝑥 ∼ ො𝑥, so it learns a map to noise corrupted input to noise free 

reconstructed output.
3. In Vincent et al. 2008, Denoising Autoencoder used the learned encoding as the initial weights of 

a neural network classification network and obtained better results as if not using them.
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Convolutional Denoising Autoencoder (Masci et al. 2011). 

1. Convolutional neural networks (CNN) state of the art in image processing tasks since the 
breakthrough of Alexnet (Krizhevsky et al. 2017).
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Convolutional Denoising Autoencoder (Masci et al. 2011). 

1. Convolutional neural networks (CNN) state of the art in image processing tasks since the 
breakthrough of Alexnet (Krizhevsky et al. 2017).

2. In Masci et al. 2011, CNN were used as the layers in a denoising autoencoder and use it as a 
pretraining step for a classification network and reported improvements on the classification 
task.
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Some denoising applications

1. Speech: Lu et al. “Speech enhancement based on deep denoising autoencoder” (2013)

2. Medical images: Gondara et al. “Medical image denoising using convolutional denoising autoencoder” 
(2016)

a) Noise-free.

b) Noisy

c) Convolutional DAE

Source: Gondara et al.Source: Lu et al.
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Solution: Autoencoder for WFS 
Images
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Autoencoder for WFS Images

1. We change from a Unsupervised Learning problem to a Supervised Learning one:
1. Input, x: noisy WFS subaperture pixel value.
2. Reconstruction, r: denoised input 𝑟 = 𝑓𝜃 𝑥
3. Ground Truth, y: value the subaperture should have without noise. 
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Autoencoder for WFS Images

1. We change from a Unsupervised Learning problem to a Supervised Learning one:
1. Input, x: noisy WFS subaperture pixel value.
2. Reconstruction, r: denoised input 𝑟 = 𝑓𝜃 𝑥
3. Ground Truth, y: value the subaperture should have without noise. 

2. Loss MSE: 𝐿(𝜃) = 𝑟 − 𝑦 2
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Dataset
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1. Dataset: simulator

COMPASS: COMputing Platform for Adaptive optics SystemS.

[5] High performance simulations using GPU.
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2. Dataset: simulation parameters

Simulation parameters.
• Telescope: 2m 10x10/8m 40x40
• GS Magnitude 9/9.2
• Fried parameter value: 0.08, 0.16, 0.24 m

(n=3)
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1. Optimise the integrator gain, g, in the presence of noise.

3. Dataset: obtaining x-y pairs
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1. Optimise the integrator gain, g, in the presence of noise.
2. Then run a simulation with two wavefront sensors, one with readout (3 e- RMS) and photon noise, n=3, and 

one without noise, n=-1.

3. Dataset: obtaining x-y pairs
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1. Optimise the integrator gain, g, in the presence of noise.
2. Then run a simulation with two wavefront sensors, one with readout (3 e- RMS) and photon noise, n=3, and 

one without noise, n=-1.
• WFS (n=3) will provide the input to train our network.
• WFS (n=-1) will provide the labels to train our network.

3. Dataset: obtaining x-y pairs
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1. Optimise the integrator gain, g, in the presence of noise.
2. Then run a simulation with two wavefront sensors, one with readout (3 e- RMS) and photon noise, n=3, and 

one without noise, n=-1.
• WFS (n=3) will provide the input to train our network.
• WFS (n=-1) will provide the labels to train our network.

3.   10000 WFS images obtained.

3. Dataset: obtaining x-y pairs
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Results
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Validation curves
• Training (80%) and validation (20 %) sets.
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Validation curves
• Training (80%) and validation (20 %) sets.
• Early stopping, i.e., if after 10 epochs the validation Loss has not decreased stop the training.
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Validation curves
• Training (80%) and validation (20 %) sets.
• Early stopping, i.e., if after 10 epochs the validation Loss has not decreased stop the training.
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Reconstruction example I

• 𝑟0 = 0.08 𝑚
• Guide star magnitude, 𝑀 = 9
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Reconstruction example II

• 𝑟0 = 0.16 𝑚
• Guide star magnitude, 𝑀 = 9.2
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Testing Autoencoder on a 
simulation
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Testing Autoencoder on a simulation

• Plug Autoencoder into a simulation.
• After obtaining a WFS image, denoise each subaperture with the denoising autoencoder.
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Testing Autoencoder on a simulation I

• Plug Autoencoder into a simulation.
• After obtaining a WFS image, denoise each subaperture with the denoising autoencoder.
• Delay 0.

L.
E.

 S
R
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Testing Autoencoder on a simulation II

• Plug Autoencoder into a simulation.
• After obtaining a WFS image, denoise each subaperture with the denoising autoencoder.
• Delay 2.

L.
E.

 S
R
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Other Results
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Comparison with other methods
• Comparison between brightest pixel [8] selection and denoising autoencoder.
• Noise (n=3) and different value of guide star magnitudes.
• Best number of brightest pixel is selected.
• For each magnitude an autoencoder is trained with data from data magnitude.
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Comparison with other methods
• Comparison between brightest pixel [8] selection and denoising autoencoder.
• Noise (n=3) and different value of guide star magnitudes.
• Best number of brightest pixel is selected.
• For each magnitude an autoencoder is trained with data from data magnitude.
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Reinforcement Learning in Adaptive Optics
• We are developing a controller based on “Reinforcement Learning”, learning by trial and error to optimize a 

reward function.
• The autoencoder could form part of the full pipeline to denoise the image in case that noise is present.
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Reinforcement Learning in Adaptive Optics
• We are developing a controller based on “Reinforcement Learning”, learning by trial and error to optimize a 

reward function.
• The autoencoder could form part of the full pipeline to denoise the image in case that noise is present.
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Future work

• Test the inference time.
• Improve inference time with network distillation or its 

implementation in a high performance frameworks (e.g. tensorRT).
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Future work

• Test the inference time.
• Improve inference time with network distillation or its 

implementation in a high performance frameworks (e.g. tensorRT).
• Real life experiment.

• It appears to be robust to seeing conditions.
• Train several networks with the calibration source, on the bench 

during day-time.
• Brightness of the calibration source will dictate the different SNR.
• On night-time, evaluate the target brightness and load the 

appropriate network.
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MSCA H2020 Rising STARS project

48-month mobility-oriented project across a network of 11 partners 
worldwide (on hold due to Covid-19)

● Coordinated by OdP (A/Prof. Damien Gratadour)
● Right mix of academia & industry 
● Started collaborating remotely

Facilitate the development of advanced Cyber-
Physical Systems (CPS) with HPC and real-time 
requirements

Two astronomic use-cases (among others):

● Adaptive Optics on the European Extremely 
Large Telescope (ELT)

● Square Kilometer Array (SKA)
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