Denoising Wavefront sensor Images with Deep Neural Networks

Bartomeu Pou Barcelona Supercomputing Center Polytechnic University of Catalonia

Introduction

2

Bartomeu Pou

- PhD student in Artificial Intelligence in Barcelona Supercomputing Center and Polytechnic University of Catalonia.
- Interested in Machine Learning and its application in Adaptive Optics.

Introduction

Eduardo Quiñones

Barcelona
Supercomputing Center.

Damien Gratadour

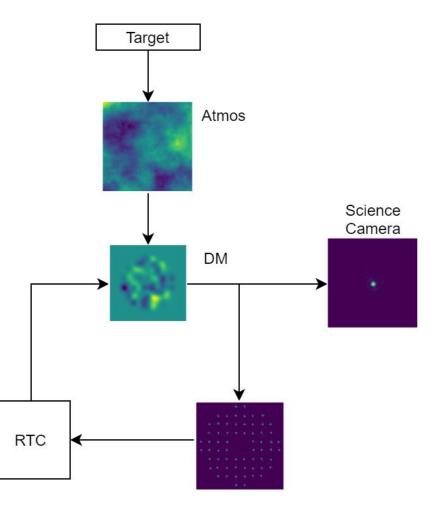
- Australian National University.
- LESIA, Observatoire de Paris, Universite PSL, CNRS, Sorbonne Universite.
- Universite Paris Diderot.

Mario Martín

• Polytechnic University of Catalonia.

Problem: Noise in the AO Loop

Closed-loop Adaptive Optics



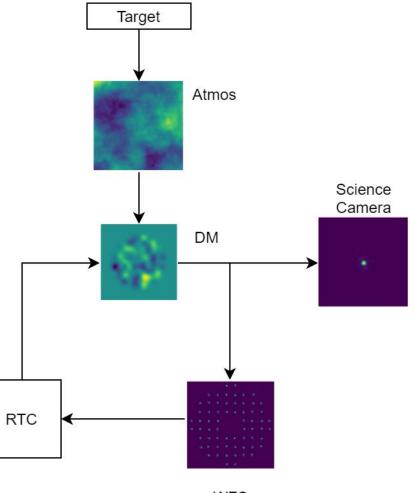
WFS

Closed-loop Adaptive Optics

1. Process WFS info with **Center of gravity (cog)** method.

$$S_{\chi} = \frac{\sum_{x} (\sum_{y} I(x,y)) x}{\sum_{x} \sum_{y} I(x,y)}; S_{y} = \frac{\sum_{y} (\sum_{x} I(x,y)) y}{\sum_{x} \sum_{y} I(x,y)}$$

$$m = (S_{x_1}, S_{x_2}, \dots, S_{x_n}, S_{y_1}, S_{y_2}, \dots, S_{y_n})$$



WFS

Closed-loop Adaptive Optics

2. Integrator with gain

• Commands that should be applied:

c = R m

Barcelona

Center

Supercomputing

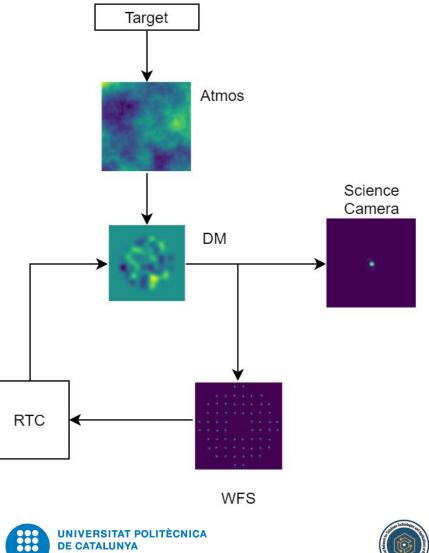
Centro Nacional de Supercomputación

7

• Reduce error by integrating past commands:

bservatoire

$$C_t = C_{t-1} - gc$$

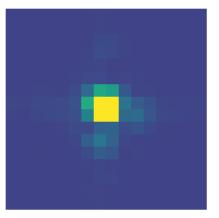


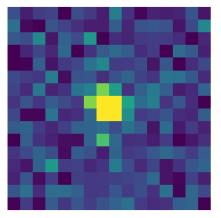
BARCELONATECH

Noise in wavefront sensor subapertures

We treat the two main sources of noise in AO:

- 1. Readout noise on the subaperture detectors.
- 2. Shot noise due to photon statistics.

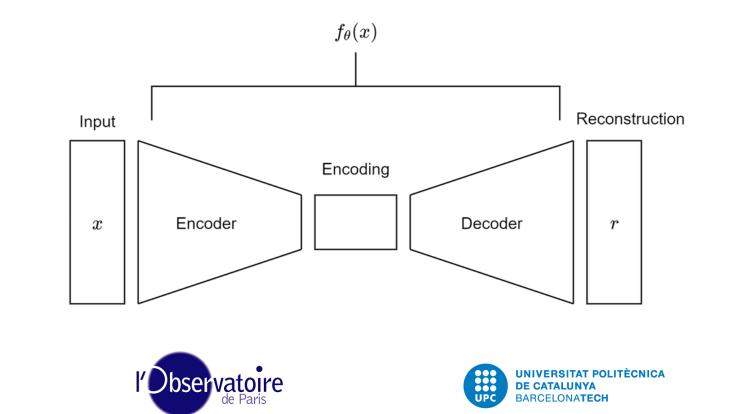




a) Noise free WFS subaperture image. b) Noise in the subaperture image. cog=(-0.008, -0.028) cog=(0.367, -0.018)

Solution: Denoising Autoencoder

1. Unsupervised learning method based on neural networks.



1. Unsupervised learning method based on neural networks.

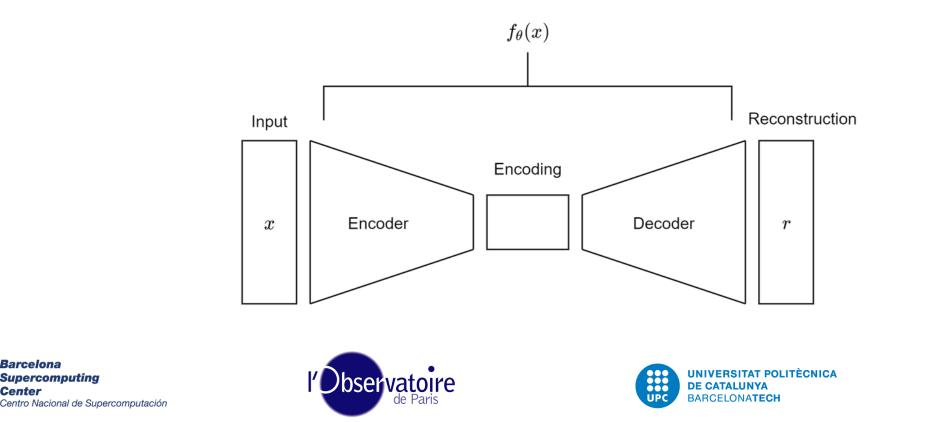
11

Barcelona

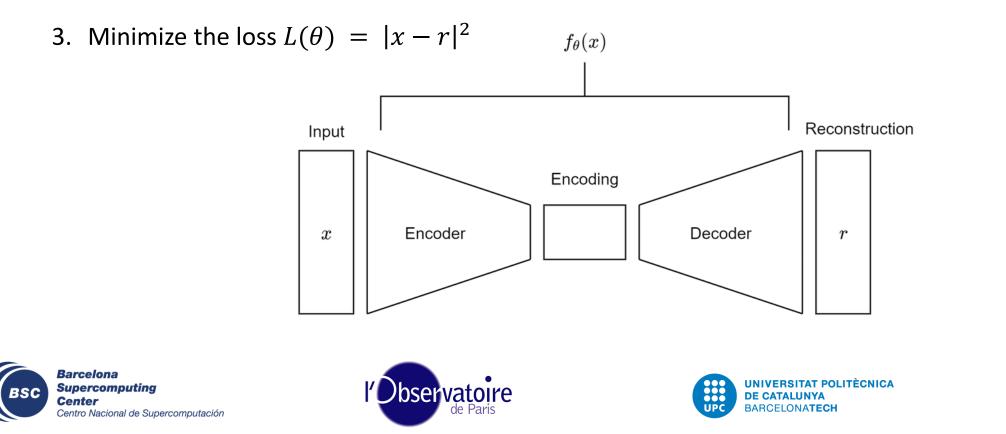
Center

Supercomputing

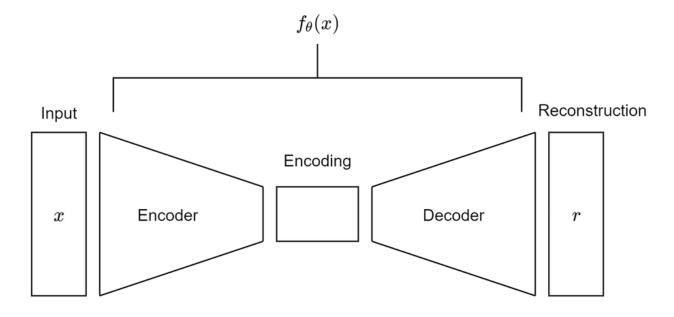
2. Learn a function f_{θ} with parameters θ to **reconstruct input**.



- 1. Unsupervised learning method based on neural networks.
- 2. Learn a function f_{θ} with parameters θ to **reconstruct input**.



- 1. Unsupervised learning method based on neural networks.
- 2. Learn a function f_{θ} with parameters θ to **reconstruct input**.
- 3. Minimize the loss $L(\theta) = |x r|^2$
- 4. Applications:
- Dimensionality reduction.
- Pretraining other networks.
- Denoising.
- Anomaly detection.



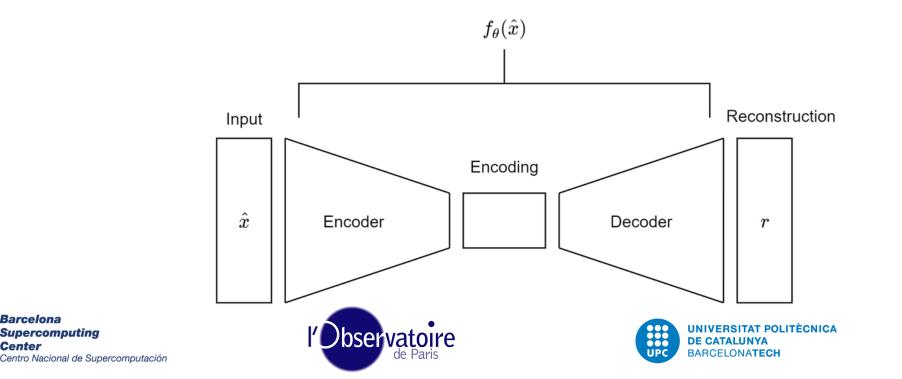
14

Denoising Autoencoder (Vincent et al. 2008)

1. Problem of Autoencoder: f_{θ} can just **become the identity** function.

Denoising Autoencoder (Vincent et al. 2008)

- 1. Problem of Autoencoder: f_{θ} can just **become the identity** function.
- Solution: corrupt the input, $x \sim \hat{x}$, so it learns a map to noise corrupted input to noise free 2. reconstructed output.



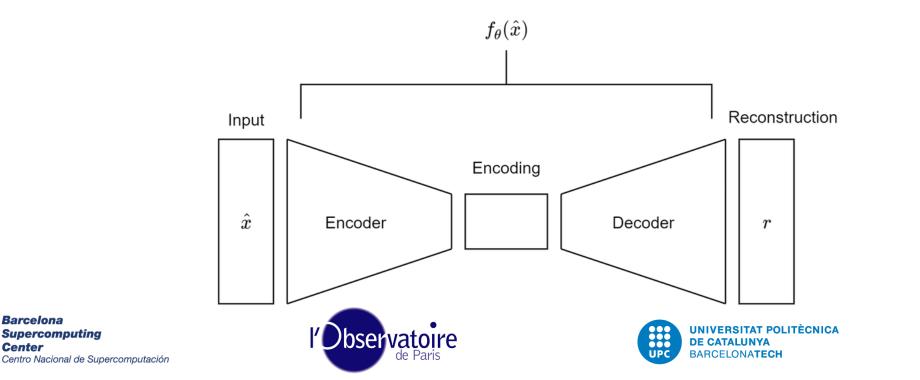
Barcelona

Center

Supercomputing

Denoising Autoencoder (Vincent et al. 2008)

- 1. Problem of Autoencoder: f_{θ} can just **become the identity** function.
- Solution: corrupt the input, $x \sim \hat{x}$, so it learns a map to noise corrupted input to noise free 2. reconstructed output.
- In Vincent et al. 2008, Denoising Autoencoder used the learned encoding as the initial weights of 3. a neural network classification network and obtained better results as if not using them.



Center

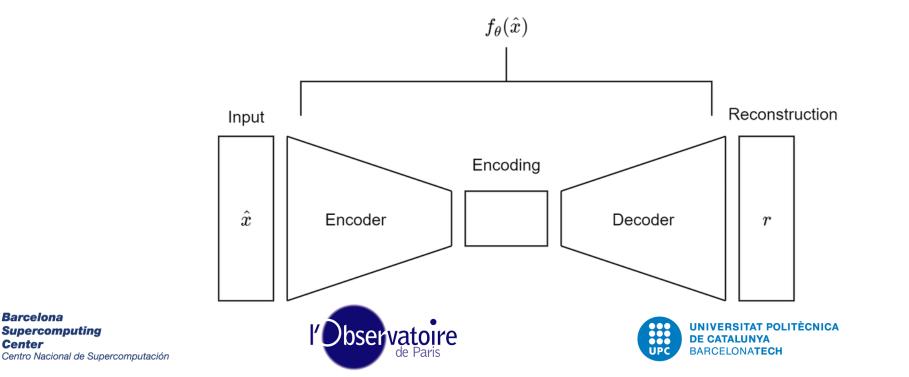
Convolutional Denoising Autoencoder (Masci et al. 2011).

1. Convolutional neural networks (CNN) state of the art in image processing tasks since the breakthrough of Alexnet (Krizhevsky et al. 2017).

17

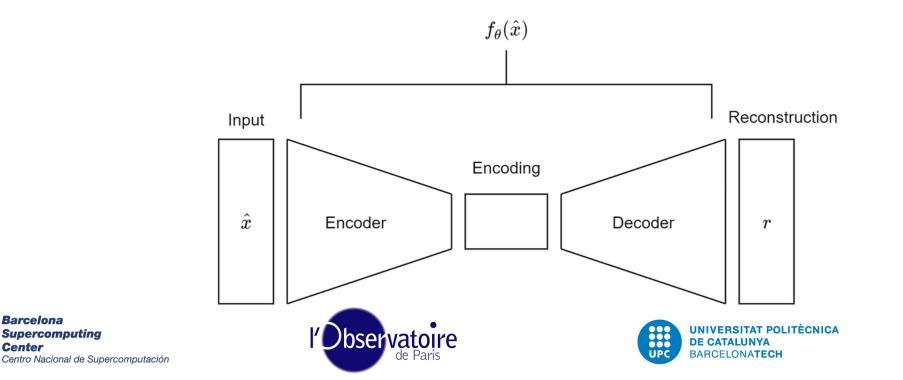
Barcelona

Center



Convolutional Denoising Autoencoder (Masci et al. 2011).

- **1.** Convolutional neural networks (CNN) state of the art in image processing tasks since the breakthrough of Alexnet (Krizhevsky et al. 2017).
- In Masci et al. 2011, CNN were used as the layers in a denoising autoencoder and use it as a 2. pretraining step for a classification network and reported improvements on the classification task.



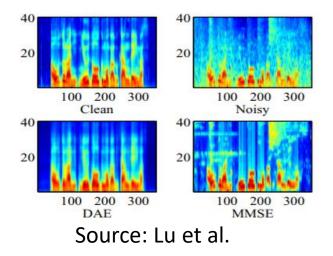
Barcelona

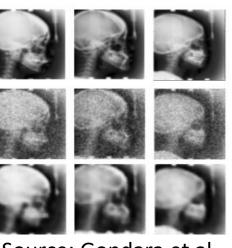
Center

Some denoising applications

1. **Speech**: Lu et al. "Speech enhancement based on deep denoising autoencoder" (2013)

2. **Medical images**: Gondara et al. "Medical image denoising using convolutional denoising autoencoder" (2016)





a) Noise-free.

b) Noisy

c) Convolutional DAE

Source: Gondara et al.

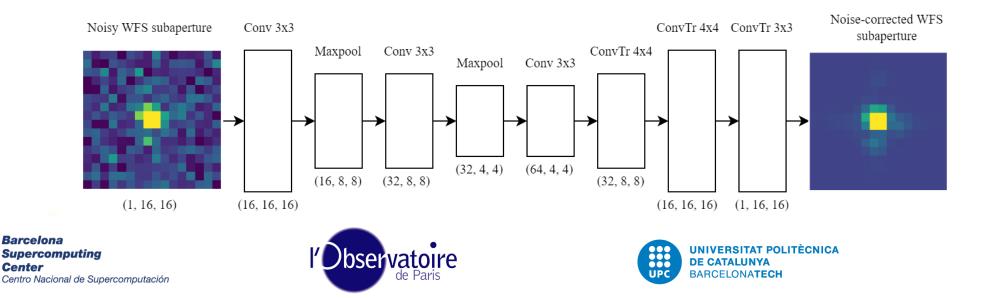
Solution: Autoencoder for WFS Images

Autoencoder for WFS Images

- 1. We change from a Unsupervised Learning problem to a Supervised Learning one:
 - **1.** Input, x: noisy WFS subaperture pixel value.
 - **2.** Reconstruction, r: denoised input $r = f_{\theta}(x)$
 - 3. Ground Truth, y: value the subaperture should have without noise.

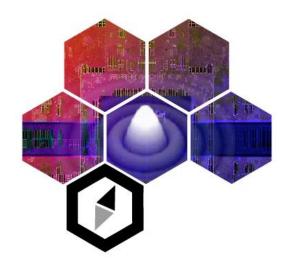
Autoencoder for WFS Images

- 1. We change from a Unsupervised Learning problem to a Supervised Learning one:
 - **1.** Input, x: noisy WFS subaperture pixel value.
 - **2.** Reconstruction, r: denoised input $r = f_{\theta}(x)$
 - 3. Ground Truth, y: value the subaperture should have without noise.
- 2. Loss MSE: $L(\theta) = |r y|^2$



1. Dataset: simulator

COMPASS: COMputing Platform for Adaptive optics SystemS.



[5] High performance simulations using GPU.

2. Dataset: simulation parameters

Simulation parameters.

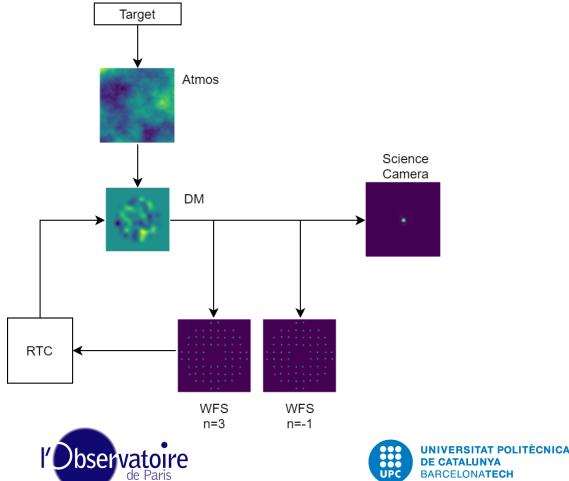
- Telescope: 2m 10x10/8m 40x40
- GS Magnitude 9/9.2
- Fried parameter value: 0.08, 0.16, 0.24 m

Atmospheric parameters		Telescope Parameters	
L_0 (m)	10^{5}	λ_{target} (µm)	1.65
$r_0(m)$	$0.08/0.16/0.24 @ 0.5 \ \mu m$		
Wind speed (m/s)	20	WFS parameters	
Wind direction (°)	45	Number of subapertures	10x10/40x40
AO loop parameters		Number of valid subapertures	64/1200
Loop frequency (Hz)	500	Pixels per subaperture	16
Delay	0/2	Pixel size (arcsec)	0.25
DM parameters		$\lambda_{wfs} \ (\mu m)$	0.5
Mirrors	Pzt and TT	GS Magnitude	9/9.2
Coupling (pzt)	0.2	Read Out Noise (e- RMS)	3

Table 2: Simulation parameters. Symbol "/" indicates that different values for that parameter are used.

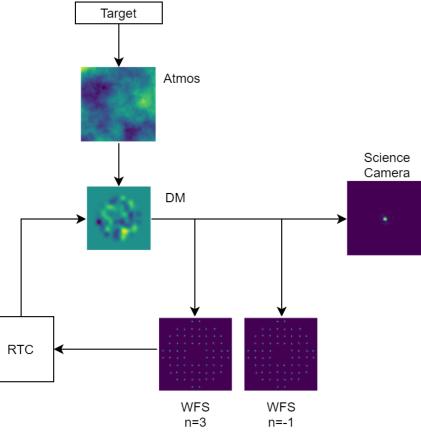
1. Optimise the integrator gain, g, in the presence of noise.

- 1. Optimise the integrator gain, g, in the presence of noise.
- 2. Then run a simulation with two wavefront sensors, one with readout (3 e- RMS) and photon noise, n=3, and one without noise, n=-1.



risinc

- Optimise the integrator gain, g, in the presence of noise. 1.
- Then run a simulation with two wavefront sensors, one with readout (3 e- RMS) and photon noise, n=3, and 2. one without noise, n=-1.
 - WFS (n=3) will provide the input to train our network. ٠
 - WFS (n=-1) will provide the labels to train our network. ٠



IIVERSITAT POLITÈCNICA

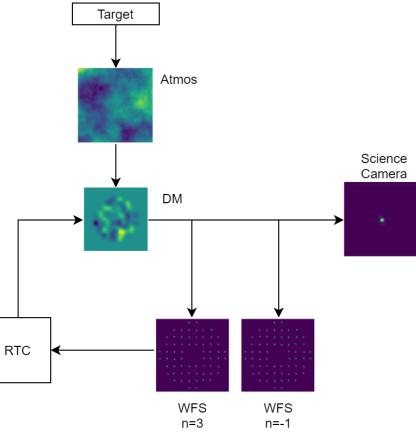
Barcelona

Center

Supercomputing

Centro Nacional de Supercomputación

- Optimise the integrator gain, g, in the presence of noise. 1.
- Then run a simulation with two wavefront sensors, one with readout (3 e- RMS) and photon noise, n=3, and 2. one without noise, n=-1.
 - WFS (n=3) will provide the input to train our network. ٠
 - WFS (n=-1) will provide the labels to train our network. ٠
- 10000 WFS images obtained. 3.



IIVERSITAT POLITÈCNICA

Validation curves

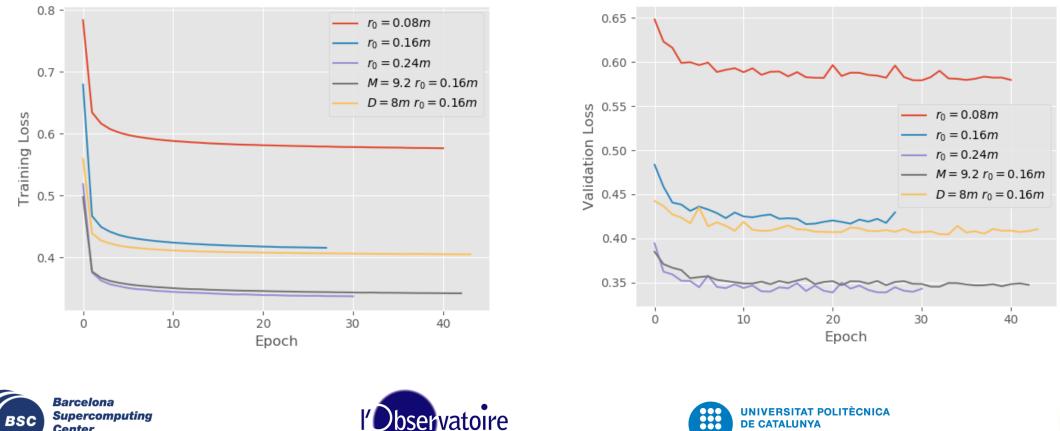
• Training (80%) and validation (20%) sets.

Validation curves

- Training (80%) and validation (20%) sets.
- Early stopping, i.e., if after 10 epochs the validation Loss has not decreased stop the training.

Validation curves

- Training (80%) and validation (20%) sets. •
- Early stopping, i.e., if after 10 epochs the validation Loss has not decreased stop the training. •



DE CATALUNYA

UPO

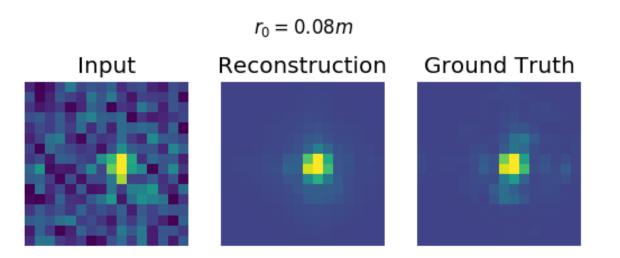
BARCELONATECH

Center

Centro Nacional de Supercomputación

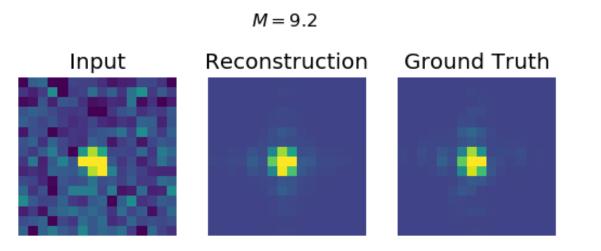
Reconstruction example I

- $r_0 = 0.08 m$
- Guide star magnitude, M = 9



Reconstruction example II

- $r_0 = 0.16 m$
- Guide star magnitude, M = 9.2



Testing Autoencoder on a simulation

Testing Autoencoder on a simulation

- Plug Autoencoder into a simulation.
- After obtaining a WFS image, denoise each subaperture with the denoising autoencoder.

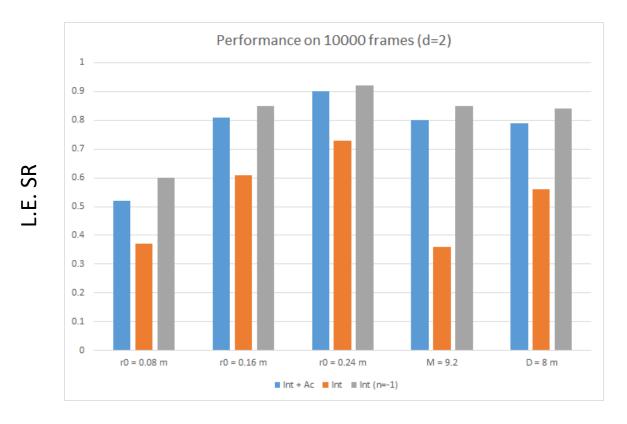
Testing Autoencoder on a simulation I

- Plug Autoencoder into a simulation.
- After obtaining a WFS image, denoise each subaperture with the denoising autoencoder.
- Delay 0.



Testing Autoencoder on a simulation II

- Plug Autoencoder into a simulation.
- After obtaining a WFS image, denoise each subaperture with the denoising autoencoder.
- Delay 2.



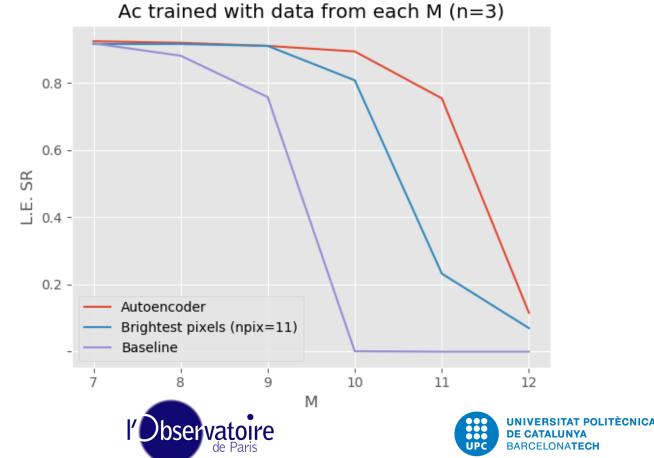
Other Results

Comparison with other methods

- Comparison between brightest pixel [8] selection and denoising autoencoder.
- Noise (n=3) and different value of guide star magnitudes.
- Best number of brightest pixel is selected.
- For each magnitude an autoencoder is trained with data from data magnitude.

Comparison with other methods

- Comparison between brightest pixel [8] selection and denoising autoencoder.
- Noise (n=3) and different value of guide star magnitudes.
- Best number of brightest pixel is selected.
- For each magnitude an autoencoder is trained with data from data magnitude. •



Barcelona

Center

Supercomputing

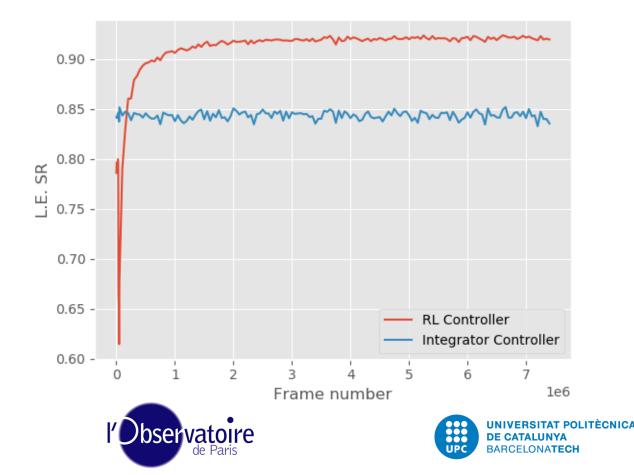
Centro Nacional de Supercomputación

Reinforcement Learning in Adaptive Optics

- We are developing a controller based on "Reinforcement Learning", learning by trial and error to optimize a reward function.
- The autoencoder could form part of the full pipeline to denoise the image in case that noise is present.

Reinforcement Learning in Adaptive Optics

- We are developing a controller based on "Reinforcement Learning", learning by trial and error to optimize a reward function.
- The autoencoder could form part of the full pipeline to denoise the image in case that noise is present.



Future work

- Test the inference time.
 - Improve inference time with network distillation or its implementation in a high performance frameworks (e.g. tensorRT).

Future work

- Test the inference time.
 - Improve inference time with network distillation or its implementation in a high performance frameworks (e.g. tensorRT).
- Real life experiment.
 - It appears to be robust to seeing conditions.
 - Train several networks with the calibration source, on the bench during day-time.
 - Brightness of the calibration source will dictate the different SNR.
 - On night-time, evaluate the target brightness and load the appropriate network.

MSCA H2020 Rising STARS project

48-month mobility-oriented project across a network of 11 partners worldwide (on hold due to Covid-19)

- Coordinated by OdP (A/Prof. Damien Gratadour)
- Right mix of academia & industry
- Started collaborating remotely

Facilitate the development of advanced Cyber-Physical Systems (CPS) with HPC and real-time requirements

Two astronomic use-cases (among others):

- Adaptive Optics on the European Extremely Large Telescope (ELT)
- Square Kilometer Array (SKA)

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Bibliography

[1] Pou, B., et al. "Denoising wavefront sensor image with deep neural networks." *Adaptive Optics Systems VII*. Vol. 11448. International Society for Optics and Photonics, 2020.

[2] Hinton, Geoffrey E., and Richard S. Zemel. "Autoencoders, minimum description length, and Helmholtz free energy." Advances in neural information processing systems 6 (1994): 3-10.

[3] Bourlard, Hervé, and Yves Kamp. "Auto-association by multilayer perceptrons and singular value decomposition." *Biological cybernetics* 59.4 (1988): 291-294.

[4] Yann, L. *Modeles connexionnistes de lapprentissage*. Diss. These de Doctorat, Universite Paris, 1987.

[5] Vincent, Pascal, et al. "Extracting and composing robust features with denoising autoencoders." *Proceedings of the 25th international conference on Machine learning*. 2008.

[6] Masci, Jonathan, et al. "Stacked convolutional auto-encoders for hierarchical feature extraction." *International conference on artificial neural networks*. Springer, Berlin, Heidelberg, 2011.

[7] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "ImageNet classification with deep convolutional neural networks." *Communications of the ACM* 60.6 (2017): 84-90.

[8] Lu, Xugang, et al. "Speech enhancement based on deep denoising autoencoder." Interspeech. Vol. 2013. 2013.

[9] Gondara, Lovedeep. "Medical image denoising using convolutional denoising autoencoders." 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW). IEEE, 2016.

[10] <u>https://anr-compass.github.io/compass/</u>

[11] Basden, A. G., R. M. Myers, and Eric Gendron. "Wavefront sensing with a brightest pixel selection algorithm." *Monthly Notices of the Royal Astronomical Society* 419.2 (2012): 1628-1636.