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Discriminative models vs Generative models

• Discriminative Models

Discriminate between different kinds of data instances, for

example classifiers - capture the conditional probability

P(Y|X) where Y = labels and X instances

• Generative models

Can generate new data instances - capture the joint

probability p(X, Y) in the supervised case, or just p(X) if

there are no labels.

Generative modeling
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Illustration from https://developers.google.com/machine-learning/gan

GANs are one (clever) kind of generative models
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Principle and interest

Concept proposed in 2014 in the paper Generative Adversarial Nets by Ian J. Goodfellow

and his colleagues at University of Montreal

“Generative Adversarial networks is the most interesting idea in the last ten years in machine 

learning”   Yann LeCun

GANs are deep neural network architectures made of two different networks, contesting 

with each other by playing a zero-sum game

They learn from mistakes and try not to make similar errors in the future

Two networks

• Generator: learns to generate plausible data from random noise (uniform, Gaussian…)

• Discriminator: learns to distinguish the generator's fake data from real data
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Illustration from https://2018.igem.org/Team:Vilnius-Lithuania-OG/Gan_Introduction

End: when the generated images are not 

distinguishable from real images anymore

= Nash equilibrium



• Every week, new GAN papers are coming out in lots of topics
A list, not maintained since 2019: 
https://github.com/hindupuravinash/the-gan-zoo

Why are they so popular ?
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• Impressive results, improving really fast:

Ian Goodfellow tweet in January 2019
4.5 years of GAN progress on face generation. 
https://arxiv.org/abs/1406.2661 https://arxiv.org/abs/1511.06434 
https://arxiv.org/abs/1606.07536 https://arxiv.org/abs/1710.10196 
https://arxiv.org/abs/1812.04948

From Z. Farou 10.13140/RG.2.2.24193.48483/2



Why are they so popular ?
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GauGAN, named after post-Impressionist painter Paul Gauguin, creates 
photorealistic images from segmentation maps, which are labeled 
sketches that depict the layout of a scene

https://www.nvidia.com/en-us/research/ai-playground/



Why are they so popular ?
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Large scale GAN training for high fidelity natural image synthesis Brock et 
al., ICLR’19



Some maths
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Log loss function to optimize

Minimax: Inner maximization by discriminator and outer minimization by generator

=> Alternate discriminator and generator optimization

Discriminator output for 
real data x

Discriminator output for 
generated fake data G(Z)

Backpropagation for D

Discriminator D:
• classifies real data + fake data from 

G
• D loss penalizes missclassifications
• D weights update through 

backpropagation from the 
discriminator loss through D

Generator G:
• maps the noise to the data space 
• implicitly defines the distribution 

pmodel ( .,θ)

• G loss penalizes G for producing 
a sample that D classifies as fake

• G weights update through 
backpropagation from the 
discriminator loss through D and G

Backpropagation for G



DCGAN
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Unsupervised representation learning with deep 
convolutional generative adversarial networks, A. 
Radford et al, ICLR 2016

Simple and efficient network
Mainly composes of convolution layers without 
max pooling or fully connected layers

This paper gives some guidelines to design a 
good GAN architecture

A good start (but not the better loss function)



� Saturation and gradients vanishing

⇒ If gradient is too small, it prevents the weights from changing their value

� Mode collapse

During the training, the generator may collapse to a setting where it always produces same outputs

⇒ It can trick the discriminator but gets stuck in a small space with extremely low variety

Pitfalls & modifications
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Illustration from Dist-GAN: An Improved GAN using Distance Constraints



� Solutions proposed

⇒ Change minimax formulation

⇒ Change loss for Wasserstein loss

Wasserstein is a distance function between probability distributions on a given metric space M

The Wasserstein loss enables to train the discriminator to optimality without vanishing gradients

=> the discriminator doesn't get stuck in local minima

⇒ Regularization : adding noise to discriminator inputs, penalizing discriminator weights

⇒ Encoder – Decoder architecture

Modifications
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Goals
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• Complete experimental databases to evaluate the performance of optronic sensors

• Keep the same radiometric levels and cloud cover but with different spatial distribution

• Use ice or liquid water content and thus not many training data

⇒ Input of radiative transfer code 

⇒ Images for different spectral bands

different viewing angles

• Keypoints: 

⇒ Realistic cloud-edges, as they are the main sources of false alarm for detecting targets

on a cloudy sky

⇒ Be able to generate images larger than real input images, without mosaic effect



First results: master internship of P. de Perthuis
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We used the GAN proposed by Zhou et al 2018 – Non-Stationary Texture Synthesis by 

Adversarial Expansion

• Impressive results

• Designed to do zoom
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Diversity by using
different patchs in one 

image

Learning is done on 1 large image

The idea is to learn to generate 2k x 2k images
from k x k patchs

First results: master internship of P. de Perthuis

Encoder – decoder
architecture



Results
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Satellite images of optical thickness Simulations

Our input: learning on a database instead of only one image / 2 GANs, the first from random noise



Results

Q : How can we decide if images simulated by GANs are realis tic ?

• Basic stats: µ, σ, skewness, kurtosis

• Stats for natural images:  - power spectrum ~1/fp f spatial frequency

- distribution of difference between two adjacent pixels           

in rows or columns = generalized Laplace distri ��
��

�

�
��

• Stats for cloud edges: quantiles of distribution of difference between two adjacent 
pixels in rows or columns at cloud edges
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Results
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Database Simulations

Slope of power 
spectrum

90 % quantile of 
differences 

between two 
adjacent pixels 



Ongoing work – PhD P. Chatillon (dir. Y. Gousseau Téléc om)

Goals : 
• Add terms linked to relevant prior physics information in loss function
• Accounting for multiscale effects
• Super-resolution from low resolution images

First results using SinGAN :
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Aim at learning internal
stats of patches at 
different scales within a 
single image

Trained in a coarse-to-
fine fashion

Tamar Rott Shaham, Tali Dekel, Tomer Michaeli: SinGAN: Learning a Generative Model 
from a Single Natural Image



Ongoing work – PhD P. Chatillon (dir. Y. Gousseau Téléc om)

First results : 
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Simulations for satellite images of optical thickness
Pb: lack of diversity - copy of some areas
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Some examples of the use of GANs in astrophysics

• A site listing ~ 300 ML papers in cosmology: https://github.com/georgestein/ml-in-
cosmology

Some of the GAN applications cited:

• Fast cosmic web simulations with generative adversarial networks
• Painting halos from 3D dark matter fields using Wasserstein mapping networks
• HIGAN: Cosmic Neutral Hydrogen with Generative Adversarial Networks
• A black box for dark sector physics: Predicting dark matter annihilation feedback with conditional GANs
• Super-resolution emulator of cosmological simulations using deep physical models
• Emulation of cosmological mass maps with conditional generative adversarial networks
• Towards Universal Cosmological Emulators with Generative Adversarial Networks
• AI-assisted super-resolution cosmological simulations
• CosmoGAN: creating high-fidelity weak lensing convergence maps using Generative Adversarial Networks
• Denoising Weak Lensing Mass Maps with Deep Learning
• Decoding Cosmological Information in Weak-Lensing Mass Maps with Generative Adversarial Networks
• CMB-GAN: Fast Simulations of Cosmic Microwave background anisotropy maps using Deep Learning
• Inpainting Galactic Foreground Intensity and Polarization maps using Convolutional Neural Network
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Some examples of the use of GANs in astrophysics

• cosmoGAN: creates high-fidelity, weak gravitational lensing convergence maps 
DOI: 10.1186/s40668-019-0029-9 

+ GANs are accurate and fast

- They are known to be unstable during training

=> Use of cosmology prior info: typical summary statistics, to evaluate generator
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convergence maps are described by the 
same summary statistics as the fully 

simulated maps



Some examples of the use of GANs in astrophysics

• Generative deep fields: arbitrarily sized, 
random synthetic astronomical images 
through deep learning 

https://doi.org/10.1093/mnras/stz2886
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• Galaxy Image Simulation Using 
Progressive GANs
https://arxiv.org/abs/1909.12160



� Generative models

� Realistic rendering by optimizing the likelihood

� Good results in lots of domains: texture synthesis, style transfer,  morphing, 
super-resolution, denoising, text to image translation…

Summary
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X Unstable training, mode collapse

=> Wasserstein-GANs, MMD-GANs

X Lack of a proper evaluation metric to inform about training

X Need of multiscale learning => details of textures


