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Explainability techniques in M.L.Laurent Risser

1) Introduction

Models based on simple decision rules 
• Linear Models 
• Decision trees 
Models based on decision rules that are not very interpretable 
• Kernel SVM 
• Random forests 
Models even less interpretable 
• Deep neural networks

Years

Beginning of the 1980s: Expert systems for aiding the 
piloting. Input data are 10s of sensors. 

End of 2010s : Real time detection of more than 1000 image 
features using CNNs in 24 fps videos (Yolo v3).

Machine Learning (M.L.): 
• Automatic predictions based on decision rules defined during a training phase.  
• Training consists in tuning the parameters of a predefined decision rules model so that 

it mimics at best the decisions made in a training set. 
Artificial Intelligence (A.I.): 
• Applications of M.L. and Logics (e.g. expert systems)
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1) Introduction

• How does an explainable prediction model works? 

• How does a Convolutional Neural Network works? 

• Need for explainability for Black-Box prediction models 

• Three explainability techniques in Machine Learning 
A. Lime 
B. Grad-CAM 
C. Entropic Variable Boosting 
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1) Introduction

Classic example: The MNIST database [LeCun and Cortes, 2010] 

Data: 
• 60K training images  of 24x24 pixels 

• Each image  represents a handwritten digit. 

• A label   is associated to each  

Prediction model: 
•  
• Takes an image as input 
• Returns a vector of size 10 representing the probability of being in each class 

( e.g  if  ) 

Training the parameters : 
• We optimise: 

 

Prediction on a new image:  

{Xi}i=1,…,60000

Xi

Yi ∈ {0,1,…,9} Xi

gθ : ℝ24*24 ↦ [0,1]10

Ȳi = (0,0,1,0,…,0) Yi = 2

θ

̂θ = arg min
θ

1
60000

60000

∑
i=1

| |gθ(Xi) − Ȳi | |2
2

̂Ynew = g ̂θ(Xnew)

Examples of images Xi
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1) Introduction — Explainable prediction model

Example of fully explainable model  linear model: 

•  is the predicted probability that  represents the digit .  

• We denote  the image pixels 

• Here, the parameters  are a set of weights for each pixel: 

 

• Logistic regression model: 

→

g ̂θ(Xnew)[i] Xnew i

p ∈ Ω

θ
Θ = {w0(0,0), w0(0,1), …w0(28,28), w1(0,0), …, w9(28,28)}

= {{w0(p)}p∈Ω, {w1(p)}p∈Ω, …, {w9(p)}p∈Ω}

g ̂θ(Xnew)[i] = φ ∑
p∈Ω

Xnew(p)wi(p)

Xnew(p) = 0.23

…

w0 w1 w2 w3 w4 w9

Logistic function φ

About 91% accuracy on the test set of 10K images.→
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1) Introduction — Unexplainable prediction model

Example of clearly unexplainable model  convolutional neural network: →

Convolutional Neural-Networks (CNNs) heavily use convolutional filters and the ReLU function, e.g.:

0.5 0.5
0.5 0.5

⊗

-0.5 -0.5
0.5 0.5

⊗

-0.5 0.5
-0.5 0.5

⊗

ReLU

ReLU

ReLU

R(z) = max( 0 , z )

R(z) = max( 0 , z )

R(z) = max( 0 , z )
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1) Introduction — Unexplainable prediction model

Example of clearly unexplainable model  convolutional neural network:→

https://github.com/gwding/draw_convnet

https://github.com/gwding/draw_convnet
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1) Introduction — Unexplainable prediction model

Example of clearly unexplainable model  convolutional neural network: →

Xi
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1) Introduction — Unexplainable prediction model

Example of clearly unexplainable model  convolutional neural network: →

Convolution with

then ReLU, then MaxPooling (non-linear subsampling)

Xi

I2,c(px, py) = b2
c +

1

∑
k=0

1

∑
l=0

Xi(px + k, py + l)w2
c (k, l)

output channel Layer 
Filter for output 
channel  of layer c 2

Bias term for output 
channel  of layer c 2

I2,c(px, py) = max(0 , I2,c(px, py))

Convolution and ReLU:
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1) Introduction — Unexplainable prediction model

Example of clearly unexplainable model  convolutional neural network: →

Convolution with

then ReLU, then MaxPooling (non-linear subsampling)

Convolution with  convolution filters 
then ReLU, then Max-pooling

2 × 4

Convolution with  convolution filters 
then ReLU, then Max-pooling

4 × 8

Xi

I3,c(px, py) = b3
c +

2

∑
c′ =1 (

1

∑
k=0

1

∑
l=0

I2,c′ (px + k, py + l)w3
c,c′ (k, l))

I3,c(px, py) = max(0 , I3,c(px, py))

Convolution and ReLU:
Filter from channel   of layer 

 to channel  of layer 3
c′ 

2 c
Sum over the channels 
of the input layer So-called Rectified 

Convolution Feature Maps
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1) Introduction — Unexplainable prediction model

Example of clearly unexplainable model  convolutional neural network: →

Convolution with

then ReLU, then MaxPooling (non-linear subsampling)

Convolution with  convolution filters 
then ReLU, then Max-pooling

2 × 4

Convolution with  convolution filters 
then ReLU, then Max-pooling

4 × 8

Flatten the 8 images of  pixels4 × 4

Vector of size 8 × 4 × 4 = 128

Xi

So-called feature space or lattent space
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1) Introduction — Unexplainable prediction model

Example of clearly unexplainable model  convolutional neural network: →

Convolution with

then ReLU, then MaxPooling (non-linear subsampling)

Convolution with  convolution filters 
then ReLU, then Max-pooling

2 × 4

Convolution with  convolution filters 
then ReLU, then Max-pooling

4 × 8

Flatten the 8 images of  pixels4 × 4

Vector of size 8 × 4 × 4 = 128
Product with a matrix of size  then ReLU32 × 128

Vector of size 32

Xi
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1) Introduction — Unexplainable prediction model

Example of clearly unexplainable model  convolutional neural network: →

Convolution with

then ReLU, then MaxPooling (non-linear subsampling)

Convolution with  convolution filters 
then ReLU, then Max-pooling

2 × 4

Convolution with  convolution filters 
then ReLU, then Max-pooling

4 × 8

Flatten the 8 images of  pixels4 × 4

Vector of size 8 × 4 × 4 = 128
Product with a matrix of size  then ReLU32 × 128

Vector of size 32

Product with a 
matrix of size  10 × 32

̂Yi = gθ(Xi) = (0.97,0.02,…,0.07)

Xi
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1) Introduction — Unexplainable prediction model

Example of clearly unexplainable model  convolutional neural network: →

Convolution with

then ReLU, then MaxPooling (non-linear subsampling)

Convolution with  convolution filters 
then ReLU, then Max-pooling

2 × 4

Convolution with  convolution filters 
then ReLU, then Max-pooling

4 × 8

Flatten the 8 images of  pixels4 × 4

Vector of size 8 × 4 × 4 = 128
Product with a matrix of size  then ReLU32 × 128

Vector of size 32

Product with a 
matrix of size  10 × 32

̂Yi = gθ(Xi) = (0.97,0.02,…,0.07)

Xi

About 96% accuracy here on the test set of 10K images. Can be improved to 99% accuracy with CNNs.→ ≈
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1) Introduction — Unexplainable prediction model

Example of clearly unexplainable model  convolutional neural network: →

Convolution with

then ReLU, then MaxPooling (non-linear subsampling)

Convolution with  convolution filters 
then ReLU, then Max-pooling

2 × 4

Convolution with  convolution filters 
then ReLU, then Max-pooling

4 × 8

Flatten the 8 images of  pixels4 × 4

Vector of size 8 × 4 × 4 = 128
Product with a matrix of size  then ReLU32 × 128

Vector of size 32

Product with a 
matrix of size  10 × 32

̂Yi = gθ(Xi) = (0.97,0.02,…,0.07)

Xi

Parameters   how to explain their influence or more generally why a decision was taken???θ →
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2) Need for explainability

Explainability is not a big deal for many applications that made the use of Neural Networks popular e.g. for 
advertising or search of visual contents on the internet… BUT NNs are now used for many applications 

Online advertising Information flows Diagnostic

Autonomous vehicles Predictive policing

…
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2) Need for explainability

Emergence of a Right to explanation 
• E.U. (RGPD, art 22 — 2018) : « Right not to be subject 

to a decision solely based on automated processing, 
including profiling  » 

• Fr (Loi Informatique et Libertés) : « Right to understand 
the rules of automatic treatments and their main 
characteristics » 

• NYC Bill (Dec. 2017) : Local laws related to automatic 
decision systems 

Exemples of recent works 
• Edwards, Veal : Enslaving the Algorithm : From a « Right to an Explanation » to a « Right to Better Decisions »  IEEE 

Security and Privacy 16(3), 2018 
• Besse, Castet-Renard, Garivier, Loubes : L’I.A. du quotidien peut-elle être éthique? Statistique et société 6(3), 2018 —  

https://www.youtube.com/watch?v=RwsMv0ILxos 
• Castet-Renard, Besse, Loubes, Perussel : Encadrement des risques techniques et juridiques des activités de police 

prédictive. Rapport CHEMI du Ministère de l’Intérieur, 2019 
• ACM-FAT* community 
• …

https://www.youtube.com/watch?v=RwsMv0ILxos
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2) Need for explainability

Strong interest in industry as well  robust decision making + towards certifiable IA→

Example:

No blink 
(But possibly  
break lights)

Left blink

Right blink

Warning

Suppose that the predictions are generally accurate: 
• Which features were used to take the decision? 
• If inadequate features were used, the NN is likely to generalise poorly!

Model 1 Model 2
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2) Need for explainability

"Explainable Ar.ficial Intelligence (XAI): Concepts, Taxonomies, Opportuni.es and Challenges toward Responsible AI", A. Barrieta et al, 2019

“Interpretable Explana.ons of Black Boxes by Meaningful Perturba.on”, Ruth C. Fong, Andrea Vedaldi, 2017

“MAGIX: model agnos.c globally interpretable explana.ons,” N. Puri, P. Gupta, P. Agarwal, S. Verma, and B. Krishnamurthy, CoRR,vol. abs/1706.07160, 2017.

“Why should I trust you? Explaining the predic.ons of any classifier.”, T. Ribeiro, S. Singh, and C. Guestrin, 2016 - InternaNonal Conference on Knowledge Discovery and Data Mining, ACM2016

“Local Rule-Based Explana.ons of Black Box Decision Systems” (LORE),Riccardo GuidoS et al 2018,  

“Anchors: High-precision model-agnos.c explana.ons,” T. Ribeiro, S. Singh, and C. Guestrin, ,  in AAAI Conference on ArNficial Intelligence, 2018.

“Visualizing the feature importance for black box models“, G. Casalicchio, C. Molnar, B. Bischl, arXiv:1804.06620. 

“Audi.ng black-box models for indirect influence“, P. Adler, C. Falk, S. A. Friedler, T. Nix, G. Rybeck, C. Scheidegger, B. Smith, S. Venkatasubramanian, Knowledge and InformaNon Systems 54 (1) 
(2018) 95–122. 

“Entropic Variable Projec.on for Explainability and Intepretability“, F. Bachoc and F. Gamboa and M. Halford and J.-M. Loubes and L. Risser, 2018, arXiv:1810.07924. 

“Grad-cam: Visual explanaNons from deep networks via gradient-based localizaNon“, R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra, in: Proceedings of the IEEE 
InternaNonal Conference on Computer Vision, 2017, pp. 618–626. 

“Deep k-nearest neighbors: Towards confident, interpretable and robust deep learning“ , N. Papernot, P. McDaniel, (2018). arXiv:1803.04765. 

“Interpretable convoluNonal neural networks“, Q. Zhang, Y. Nian Wu, S.-C. Zhu, in: Proceedings of the IEEE Conference on Computer Vision and Pajern RecogniNon, 2018, pp. 8827–8836. 

“InfoGAN: Interpretable RepresentaNon Learning by InformaNon Maximizing GeneraNve Adversarial Nets“ , X. Chen, Y. Duan, R. Houthook, J. Schulman, I. Sutskever, P. Abbeel, (2016). 
arXiv:1606.03657 

“Not just a black box: Learning important features through propagaNng acNvaNon differences“, Shrikumar, P. Greenside, A. Shcherbina, A. Kundaje, 2016, arXiv:1605.01713 

“Interpretable explanaNons of black boxes by meaningful perturbaNon“, R. C. Fong, A. Vedaldi, in: IEEE InternaNonal Conference on Computer Vision, 2017, pp. 3429–3437. 

“On the Robustness of Interpretability Methods“, Alvarez-Melis et T. S. Jaakkola, arXiv:1806.08049 [cs, stat], juin 2018. 

“Interpretable Deep Learning under Fire“, X. Zhang, N. Wang, H. Shen, S. Ji, X. Luo, et T. Wang, arXiv:1812.00891 [cs], sept. 2019. 

“Improving the Adversarial Robustness and Interpretability of Deep Neural Networks by Regularizing their Input Gradients“, S. Ross et F. Doshi-Velez, arXiv:1711.09404 [cs], nov. 2017. 

“Counterfactual ExplanaNons Without Opening the Black Box: Automated Decisions and the GDPR“, Wachter, B. Mijelstadt, et C. Russell, SSRN Journal, 2017.

… and many others …

https://arxiv.org/search/cs?searchtype=author&query=Guidotti,+
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3) Three explainability solutions  LIME (Local interpretable model-agnostic explanations)→

https://arxiv.org/pdf/1602.04938.pdf 
https://homes.cs.washington.edu/~marcotcr/blog/lime/ 
https://github.com/marcotcr/lime

X1
i

X2
i

X3
i

⋮
X5

i
Prediction Ŷi = fθ(Xi)Input variables Xi

Ŷi

LIME explains why a specific (local) prediction is made by using an explainable surrogate model

Intensities of N.N. model Output probabilities

(0.98,0.03,0.1,…,0.08)⊺

Trained black-box model fθ
e.g.e.g.e.g.

https://arxiv.org/pdf/1602.04938.pdf
https://homes.cs.washington.edu/~marcotcr/blog/lime/
https://github.com/marcotcr/lime
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3) Three explainability solutions  LIME (Local interpretable model-agnostic explanations)→

Training a local surrogate models to explain the prediction of  with :
• Randomly perturb    

• Define a distance for the perturbed observations .

• Consider an explainable model  (e.g. a linear model, a decision tree, …)

•
Optimise the parameters  by minimising: 

• Explain the prediction thanks to 

Xi fθ
Xi → {Xp

i }p=1,…,P

πXi
(Xp

i ) = dist(Xi, Xp
i )

gθ′ 

θ′ 
P

∑
p=1

πXi
(Xp

i )(gθ′ (Xp
i ) − fθ(Xp

i ))2

g(θ′ )

https://arxiv.org/pdf/1602.04938.pdf 
https://homes.cs.washington.edu/~marcotcr/blog/lime/ 
https://github.com/marcotcr/lime

X1
i

X2
i

X3
i

⋮
X5

i
Prediction Ŷi = fθ(Xi)Input variables Xi

Ŷi

LIME explains why a specific (local) prediction is made by using an explainable surrogate model

Trained black-box model fθ

https://arxiv.org/pdf/1602.04938.pdf
https://homes.cs.washington.edu/~marcotcr/blog/lime/
https://github.com/marcotcr/lime
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3) Three explainability solutions  LIME (Local interpretable model-agnostic explanations)→

Training a local surrogate models to explain the prediction of  with :
• Randomly perturb    

• Define a distance for the perturbed observations .

• Consider an explainable model  (e.g. a linear model, a decision tree, …)

•
Optimise the parameters  by minimising: 

• Explain the prediction thanks to 

Xi fθ
Xi → {Xp

i }p=1,…,P

πXi
(Xp

i ) = dist(Xi, Xp
i )

gθ′ 

θ′ 
P

∑
p=1

πXi
(Xp

i )(gθ′ (Xp
i ) − fθ(Xp

i ))2

g(θ′ )

https://arxiv.org/pdf/1602.04938.pdf 
https://homes.cs.washington.edu/~marcotcr/blog/lime/ 
https://github.com/marcotcr/lime

X1
i

X2
i

X3
i

⋮
X5

i
Prediction Ŷi = fθ(Xi)Input variables Xi

Ŷi

LIME explains why a specific (local) prediction is made by using an explainable surrogate model

Trained black-box model fθ

In the image case, the 
pixel intensities are 
not necessarily 
independently 
perturbed!

https://arxiv.org/pdf/1602.04938.pdf
https://homes.cs.washington.edu/~marcotcr/blog/lime/
https://github.com/marcotcr/lime
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3) Three explainability solutions  LIME (Local interpretable model-agnostic explanations)→

fθ(Xi) = (0.97,0.02,…,0.07)

Our neural-network prediction model  …fθ

… can become a linear, and straightforwardly interpretable, model  for images close to :gθ′ Xi

Xi

gθ′ (Xi) = (0.95,0.03,…,0.05)
Xi

Weighted sum of the intensities with weights:

…

(followed by logistic function)

https://arxiv.org/pdf/1602.04938.pdf 
https://homes.cs.washington.edu/~marcotcr/blog/lime/ 
https://github.com/marcotcr/lime

To go back to our example:

https://arxiv.org/pdf/1602.04938.pdf
https://homes.cs.washington.edu/~marcotcr/blog/lime/
https://github.com/marcotcr/lime
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3) Three explainability solutions  LIME (Local interpretable model-agnostic explanations)→

https://arxiv.org/pdf/1602.04938.pdf 
https://homes.cs.washington.edu/~marcotcr/blog/lime/ 
https://github.com/marcotcr/lime

Classic results out of the original LIME paper:

https://arxiv.org/pdf/1602.04938.pdf
https://homes.cs.washington.edu/~marcotcr/blog/lime/
https://github.com/marcotcr/lime
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3) Three explainability solutions  LIME (Local interpretable model-agnostic explanations)→

https://arxiv.org/pdf/1602.04938.pdf 
https://homes.cs.washington.edu/~marcotcr/blog/lime/ 
https://github.com/marcotcr/lime

Classic results out of the original LIME paper:

https://arxiv.org/pdf/1602.04938.pdf
https://homes.cs.washington.edu/~marcotcr/blog/lime/
https://github.com/marcotcr/lime
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3) Three explainability solutions  Grad-CAM→

To understand Grad-CAM, one must first have in mind how a N.N. is trained

• Training observations:

•

• Gradient descent based optimisation: 

{(Xi, Yi)}i=1,…,n

̂θ = arg min
θ

n

∑
i=1

loss( fθ(Xi), Yi) = arg min
θ

R (fθ, {(Xi, Yi)}i=1,…,n)
θit+1 = θit − λ∇θ R (fθit

, {(Xi, Yi)}i=1,…,n)

Parameters θ

https://arxiv.org/pdf/1610.02391.pdf 
http://gradcam.cloudcv.org/ 
https://github.com/ramprs/grad-cam/

https://arxiv.org/pdf/1610.02391.pdf
http://gradcam.cloudcv.org/
https://github.com/ramprs/grad-cam
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3) Three explainability solutions  Grad-CAM→

To understand Grad-CAM, one must first have in mind how a N.N. is trained

• Training observations:

•

• Gradient descent based optimisation: 

{(Xi, Yi)}i=1,…,n

̂θ = arg min
θ

n

∑
i=1

loss( fθ(Xi), Yi) = arg min
θ

R (fθ, {(Xi, Yi)}i=1,…,n)
θit+1 = θit − λ∇θ R (fθit

, {(Xi, Yi)}i=1,…,n)
Gradient estimation

fθit
(Xn)fθit
(Xn)fθit
(Xn)fθit
(Xn)

Make several predictions (mini-batch)

https://arxiv.org/pdf/1610.02391.pdf 
http://gradcam.cloudcv.org/ 
https://github.com/ramprs/grad-cam/

https://arxiv.org/pdf/1610.02391.pdf
http://gradcam.cloudcv.org/
https://github.com/ramprs/grad-cam
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3) Three explainability solutions  Grad-CAM→

To understand Grad-CAM, one must first have in mind how a N.N. is trained

• Training observations:

•

• Gradient descent based optimisation: 

{(Xi, Yi)}i=1,…,n

̂θ = arg min
θ

n

∑
i=1

loss( fθ(Xi), Yi) = arg min
θ

R (fθ, {(Xi, Yi)}i=1,…,n)
θit+1 = θit − λ∇θ R (fθit

, {(Xi, Yi)}i=1,…,n)
Gradient estimation

fθit
(Xn)fθit
(Xn)fθit
(Xn)fθit
(Xn)

Approx.  and 
its derivatives w.r.t. 

the N.N outputs

R( . . . )

YnYnYnYn

https://arxiv.org/pdf/1610.02391.pdf 
http://gradcam.cloudcv.org/ 
https://github.com/ramprs/grad-cam/

https://arxiv.org/pdf/1610.02391.pdf
http://gradcam.cloudcv.org/
https://github.com/ramprs/grad-cam
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3) Three explainability solutions  Grad-CAM→

To understand Grad-CAM, one must first have in mind how a N.N. is trained

• Training observations:

•

• Gradient descent based optimisation: 

{(Xi, Yi)}i=1,…,n

̂θ = arg min
θ

n

∑
i=1

loss( fθ(Xi), Yi) = arg min
θ

R (fθ, {(Xi, Yi)}i=1,…,n)
θit+1 = θit − λ∇θ R (fθit

, {(Xi, Yi)}i=1,…,n)
Gradient estimation

fθit
(Xn)fθit
(Xn)fθit
(Xn)fθit
(Xn)

Back-propagate this information to compute the derivative of  w.r.t. all N.N. parametersR

YnYnYnYn

https://arxiv.org/pdf/1610.02391.pdf 
http://gradcam.cloudcv.org/ 
https://github.com/ramprs/grad-cam/

https://arxiv.org/pdf/1610.02391.pdf
http://gradcam.cloudcv.org/
https://github.com/ramprs/grad-cam
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3) Three explainability solutions  Grad-CAM→

Instead of back-propagating the derivatives of the risk , it is possible to back-propagate the derivatives of a 
specific value in the N.N. outputs 

R

Slightly modified back-propagation
[Springenberg et al. 2014]

yc

Represents how  
is sensitive to the 
N.N. inputs (for the 
tested image)

yc

https://arxiv.org/pdf/1610.02391.pdf 
http://gradcam.cloudcv.org/ 
https://github.com/ramprs/grad-cam/

https://arxiv.org/pdf/1610.02391.pdf
http://gradcam.cloudcv.org/
https://github.com/ramprs/grad-cam
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3) Three explainability solutions  Grad-CAM→

Instead of back-propagating the derivatives of the risk , it is possible to back-propagate the derivatives of a 
specific value in the N.N. outputs 

R

Not that convincing … but a good starting point!       Not class-discriminative but high resolution→

Grad-CAM will compute a special mask for this result

https://arxiv.org/pdf/1610.02391.pdf 
http://gradcam.cloudcv.org/ 
https://github.com/ramprs/grad-cam/

https://arxiv.org/pdf/1610.02391.pdf
http://gradcam.cloudcv.org/
https://github.com/ramprs/grad-cam
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3) Three explainability solutions  Grad-CAM→

To get a more class discriminative Grad-CAM uses the Rectified Convolution Feature Maps  
(where  is a channel associated to a feature  and  are coordinates in these subsampled images of detected features)

Ak
i, j

k (i, j )

yc

https://arxiv.org/pdf/1610.02391.pdf 
http://gradcam.cloudcv.org/ 
https://github.com/ramprs/grad-cam/

https://arxiv.org/pdf/1610.02391.pdf
http://gradcam.cloudcv.org/
https://github.com/ramprs/grad-cam
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3) Three explainability solutions  Grad-CAM→

To get a more class discriminative Grad-CAM uses the Rectified Convolution Feature Maps  
(where  is a channel associated to a feature  and  are coordinates in these subsampled images of detected features)

Ak
i, j

k (i, j )

yc

αc
k =

1
Z ∑

i
∑

j

∂yc

∂Ak
i, j

Compute importance weights:

Lc
Grad−CAM = ReLU (∑

k

αc
k Ak)Compute Grad-CAM heat map:

https://arxiv.org/pdf/1610.02391.pdf 
http://gradcam.cloudcv.org/ 
https://github.com/ramprs/grad-cam/

https://arxiv.org/pdf/1610.02391.pdf
http://gradcam.cloudcv.org/
https://github.com/ramprs/grad-cam
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3) Three explainability solutions  Grad-CAM→

To get a more class discriminative Grad-CAM uses the Rectified Convolution Feature Maps  
(where  is a channel associated to a feature  and  are coordinates in these subsampled images of detected features)

Ak
i, j

k (i, j )

yc

Up-sampled heat map Lc
Grad−CAM

https://arxiv.org/pdf/1610.02391.pdf 
http://gradcam.cloudcv.org/ 
https://github.com/ramprs/grad-cam/

https://arxiv.org/pdf/1610.02391.pdf
http://gradcam.cloudcv.org/
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3) Three explainability solutions  Grad-CAM→

https://arxiv.org/pdf/1610.02391.pdf 
http://gradcam.cloudcv.org/ 
https://github.com/ramprs/grad-cam/

Results 

https://arxiv.org/pdf/1610.02391.pdf
http://gradcam.cloudcv.org/
https://github.com/ramprs/grad-cam
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3) Three explainability solutions  Grad-CAM→

https://arxiv.org/pdf/1810.07924.pdf 
https://www.gems-ai.com/ 
https://github.com/XAI-ANITI/ethik

« What-if machine » for group-explainability 

« Black-box » decision rules 

{Xi, Yi}i=1,…,n

Xi = {X1
i , …, Xp

i }

Test set

With

X1
i

X2
i

X3
i

…
Xp

i

Ŷi := f (Xi)
…

Intuition : Re-weighting the observations  to transform a specific property of the test set in 
average. 

{Xi, Yi}i=1,…,n

https://arxiv.org/pdf/1810.07924.pdf
https://www.gems-ai.com/
https://github.com/XAI-ANITI/ethik
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3) Three explainability solutions  Entropic Variable Projection→

https://arxiv.org/pdf/1810.07924.pdf 
https://www.gems-ai.com/ 
https://github.com/XAI-ANITI/ethik

« What-if machine » for group-explainability 

Example (based on the adult income dataset https://www.kaggle.com/uciml/adult-census-income)

Intuition : Re-weighting the observations  to transform a specific property of the test set in 
average. 

{Xi, Yi}i=1,…,n

Age (X1) Education.num (X2) Marital.status (X3) Hours.per.week (X4) Loan granted 
— True (Y )… Loan granted — 

Predicted ( ̂Y = fθ(X ))

54                          4                          Divorced                           40                                                 No                             No 

41                         10                     Never-married                      60                                                 Yes                            Yes 

51                         13                       Married-civ                        40                                                  Yes                            No 

39                         14                       Married-civ                        65                                                  Yes                            Yes 

49                         10                         Divorced                          50                                                   No                            Yes 

…                         …                               …                               …                                                   …                              … 

https://arxiv.org/pdf/1810.07924.pdf
https://www.gems-ai.com/
https://github.com/XAI-ANITI/ethik
https://www.kaggle.com/uciml/adult-census-income


Explainability techniques in M.L.Laurent Risser

3) Three explainability solutions  Entropic Variable Projection→

https://arxiv.org/pdf/1810.07924.pdf 
https://www.gems-ai.com/ 
https://github.com/XAI-ANITI/ethik

Age

P 
( l

oa
n 

gr
an

te
d 

) 

What-if the average age is 50 instead of 42 in the test set?

1.05
0.83

1.15

0.81

1.15

…

Compute optimal weights

Explain how the outputs vary

Technical locks addressed in the paper:  
• Algorithmic cost in high-dimension 
• Risk to test unrealistic observations

https://arxiv.org/pdf/1810.07924.pdf
https://www.gems-ai.com/
https://github.com/XAI-ANITI/ethik
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3) Three explainability solutions  Entropic Variable Projection→

https://arxiv.org/pdf/1810.07924.pdf 
https://www.gems-ai.com/ 
https://github.com/XAI-ANITI/ethik

What-if the average […] is […] instead of [original average value] in the test set?

…
…

…

…

…

Compute optimal weights

…

… then explain

https://arxiv.org/pdf/1810.07924.pdf
https://www.gems-ai.com/
https://github.com/XAI-ANITI/ethik
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3) Three explainability solutions  Entropic Variable Projection→

https://arxiv.org/pdf/1810.07924.pdf 
https://www.gems-ai.com/ 
https://github.com/XAI-ANITI/ethik

What-if the average error on […] is […] instead of [original average value] in the test set?

…
…

…

…

…

Compute optimal weights

…

… then explain

https://arxiv.org/pdf/1810.07924.pdf
https://www.gems-ai.com/
https://github.com/XAI-ANITI/ethik
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3) Three explainability solutions  Entropic Variable Projection→

https://arxiv.org/pdf/1810.07924.pdf 
https://www.gems-ai.com/ 
https://github.com/XAI-ANITI/ethik

CelebA dataset with a well-known bias (http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html) 
• >200K celebrity images with 40 binary annotations  
•  can be the Attractive featureYi

https://arxiv.org/pdf/1810.07924.pdf
https://www.gems-ai.com/
https://github.com/XAI-ANITI/ethik
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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3) Three explainability solutions  Entropic Variable Projection→

https://arxiv.org/pdf/1810.07924.pdf 
https://www.gems-ai.com/ 
https://github.com/XAI-ANITI/ethik

What-if the average prediction of attractive is 0.8 instead of [original average value] in the test set?

Average pixel influences to predict whether someone is attractive or not by distinguishing males and females

https://arxiv.org/pdf/1810.07924.pdf
https://www.gems-ai.com/
https://github.com/XAI-ANITI/ethik
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Conclusion

• Explainability has become an important topic in Machine-Learning. 

• Many solution exist, although there are still many open questions (in particular for complex data). 

• How to use the outcomes of these explainability techniques to improve the robustness of Black-box 
predictions or to detect unreliable predictions?
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Methodological research on machine learning (M.L.) in Toulouse

Mathematics Institute of 
Toulouse — IMT 

• UMR CNRS, UT3, INSA 
• 360 members 
• Statistics and Optimisation team 

working on M.L.

Computer Science Research 
Institute of Toulouse — IRIT 

• UMR CNRS, INPT, UT3, UT1, UT2 
• 700 members 
• Different teams working on M.L.

3IA ANITI 

• 3IA institute gathering 200 
researchers in I.A. from Toulouse 

• 24 scientific chairs 
• 50 industrial partners

Labex CIMI  team A.O.C. 
• 27 permanent researchers from IMT and IRIT 
• Research in M.L. on broader topics than in 3IA ANITI

→


