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Project Goals and Outcomes
• Goal:  

• Create a general purpose, predictive adaptive optics (AO) integrator based on 
convolutional neural networks (CNN)


• Results: 

• A novel way to train robust, closed-loop integrators 

• Two CNN models that outperform classical methods under all conditions


• One greatly improves servo-lag at low magnitudes


• Another which performs better at removing noise at high magnitudes
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Motivation for Using CNNs
• Servo Lag: 

• Delay between slope measurement and commands sent to the DM


• Very noticeable for lower magnitude guide stars


• Reduces contrast — important for exoplanet imaging 


• Noise: 

• Dominates at high magnitude guide stars


• Degrades AO performance (Strehl Ratio)
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Predictive Pseudo Closed Loop Operation

Additional Steps
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Classical Integrator



Brief History of Convolutional 
Neural Networks



CNNs: Unreasonably Effective
• Good at solving “difficult” visual problems


• Learned feature extractors at each convolutional layer


• Fully differentiable to train parameters via gradient descent


• Key enablers: GPU hardware, Millions of parameters, Lots of data
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(Convolutional Neural Networks)



LSTMs: Making Time Matter

Feed Forward Neural Network
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(Long Short Term Memory)

https://colah.github.io/posts/2015-08-Understanding-LSTMs/



LSTMs: Making Time Matter

Unrolled Recurrent Neural NetworkFeed Forward Neural Network
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(Long Short Term Memory)

https://colah.github.io/posts/2015-08-Understanding-LSTMs/



LSTMs: Making Time Matter

Unrolled Recurrent Neural NetworkFeed Forward Neural Network

Long Short Term Memory (LSTMs)

https://colah.github.io/posts/2015-08-Understanding-LSTMs/ 9

(Long Short Term Memory)



GANs: Solving Indescribable Problems 
• How do we train a generative 

network to create new (original) 
images? 

• Train a second CNN that judges 
the output of the generative CNN 

• The generator must learn to 
“trick” the judge into thinking its 
output is from the true data 

• Can be used to make simulated 
data look like experimental data

thispersondoesnotexist.com pix2pix

CycleGAN
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(Generative Adversarial Networks)

http://thispersondoesnotexist.com


Motivation
• Use recent convolutional neural network and deep learning techniques to 

create a predictive AO controller


• Goals:


• Predictive — Mitigate servo lag by predicting future slopes


• Denoising — CNNs naturally produce images with low noise 

• General Purpose — Should work under a wide range of seeing conditions 
and not be restricted to any particular type of telescope


• Compare CNN architectures to determine which models work best
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Our Simulation Settings

• 8m Telescope Diameter


• 800 Hz Sampling Frequency


• 2 Frames of Delay


• 16 x 16 Order SH WFS


• 17 x 17 Order DM


• R Band NGS


• K Band Science Camera


• Pseudo Open Loop (POL) Control

• 3 Layer Atmosphere


• [0, 4, 10] km Altitude


• Frozen Flow
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Data Generation

• Run thousands of  independent OOMAO simulations to generate data


• Data to Save: 

• Classic Integrator Slopes


• Ground Truth Slopes

• Variables to Randomize 

• r0 : 0.15cm +/- 0.02 


• Wind Direction: [0, 2 )


• Wind Speed: [5, 10, 15] km/s +/- [2.5, 5, 10]


• NGS Magnitude: 8-16

π
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Network Models and Training



Our Models: Dense Network
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• Takes in a 3D matrix of the slope maps (X, Y, Time)


• Uses information from the current slopes and 20 past loop steps


• Outputs a single set of slopes for time T+2 to mitigate the servo lag



Our Models: LSTM Network
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• Takes in a single set of slopes 
at a time


• Extracts relevant information 
and saves it in its state for the 
next time step


• Outputs a single set of slopes 
for time T+2



Predictive Network Training
Data From Simulation Pre-Designed Neural Network Calculate Loss and  

Update Weights
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Open Loop Results

• Given a series of slopes (or wavefronts) 
our networks can very accurately 
predict several frames into the future


• However, this isn’t how the integrator 
would be used in a closed loop system

18Swanson, Robin, et al. "Wavefront reconstruction and prediction with convolutional neural networks." Adaptive Optics Systems VI. Vol. 10703. International Society for Optics and Photonics, 2018.



Predictive Pseudo Closed Loop Operation

Additional Steps
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Classical Integrator



Closed Loop Results

Classic (85.97% Strehl Ratio)
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Closed Loop Results

Classic (85.97% Strehl Ratio)
Ours (LSTM, No GAN) (84.01% Strehl Ratio)
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Closed Loop Divergence
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Closed Loop Divergence
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Closed Loop Divergence
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Adversarial Network Training

Calculate Loss and  
Update Weights

Pre-Designed Neural 
Networks
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Are these slopes from the 
training data set?


Or are they output from our 
neural network?



Closed Loop Divergence
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Our Models: Discriminator Network
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Full Training Map: Discriminator Update Step
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Full Training Map: Predictive Update Step
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Closing The Loop With Adversarial Prior

Classic (85.97% Strehl Ratio)
Ours (LSTM + GAN) (87.45% Strehl Ratio)
Ours (LSTM, No GAN) (84.01% Strehl Ratio)
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Results



Final Results: Strehl Ratios
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Final Results: Residual Wavefronts

Classic (86.05% Strehl Ratio)
Ours (Dense) (86.36% Strehl Ratio)
Ours (LSTM) (86.81% Strehl Ratio)

Classic (41.41% Strehl Ratio)
Ours (Dense) (66.34% Strehl Ratio)
Ours (LSTM) (67.91% Strehl Ratio)
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Model Generalization
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Residual Wavefront Power Spectral Density:

Classic Integrator

85.7% Strehl

Dense Network

85.8% Strehl

LSTM Network

86.1% Strehl

Magnitude 8
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PSD Ratio Images:

Classic / Dense

Ratio Image

Classic / LSTM

Ratio Image

Dense / LSTM

Ratio Image

Magnitude 8
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PSD Ratio Images:

Classic / Dense

Ratio Image

Classic / LSTM

Ratio Image

Dense / LSTM

Ratio Image

Magnitude 8
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Residual Wavefront Power Spectrum Density:

Classic Integrator

42.4% Strehl

Dense Network

65.5% Strehl

LSTM Network

63.0% Strehl

Magnitude 16
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PSD Ratio Images:

Classic / Dense

Ratio Image

Classic / LSTM

Ratio Image

Dense / LSTM

Ratio Image

Magnitude 16
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Conclusions

• Closed loop integrators can be trained robustly with a GAN prior


• Our CNN models outperform classical methods under all conditions


• LSTM models greatly improve servo-lag at low magnitudes


• Dense, feed-forward, networks perform better at removing noise at high 
magnitudes
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Future Work & Directions

• From Simulation to Hardware:  

• Implement our models on an AO bench


• Apply this knowledge to real systems (MMT, GIRMOS)


• Optimization and real-time implementation


• Explore GAN methods for creating realistic training data from experimental data


• Improving our Models: 

• Further investigate low-frequency PSD effects


• Train and test for more specific use cases (i.e., high contrast scenario)


• Integrate new CNN architecture techniques
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