Predictive AO Control with Convolutional Neural Networks

Robin Swanson, Masen Lamb, Carlos Correia, Suresh Sivanandam, Kyros Kutulakos robin@cs.toronto.edu

Project Goals and Outcomes

- Goal:
 - convolutional neural networks (CNN)
- **Results:**
 - A novel way to train robust, closed-loop integrators
 - Two CNN models that outperform classical methods under all conditions
 - One greatly improves servo-lag at low magnitudes
 - Another which performs better at removing noise at high magnitudes

• Create a general purpose, predictive adaptive optics (AO) integrator based on

Motivation for Using CNNs

- Servo Lag:
 - Delay between slope measurement and commands sent to the DM
 - Very noticeable for lower magnitude guide stars
 - Reduces contrast important for exoplanet imaging
- Noise:
 - Dominates at high magnitude guide stars •
 - Degrades AO performance (Strehl Ratio)

Predictive Pseudo Closed Loop Operation

Brief History of Convolutional Neural Networks

CNNs: Unreasonably Effective (Convolutional Neural Networks)

- Good at solving "difficult" visual problems
- Learned feature extractors at each convolutional layer
- Fully differentiable to train parameters via gradient descent
- Key enablers: GPU hardware, Millions of parameters, Lots of data

LSTMs: Making Time Matter (Long Short Term Memory)

Feed Forward Neural Network

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs: Making Time Matter (Long Short Term Memory)

Feed Forward Neural Network

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Unrolled Recurrent Neural Network

LSTMs: Making Time Matter (Long Short Term Memory)

Feed Forward Neural Network

Long Short Term Memory (LSTMs)

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Unrolled Recurrent Neural Network

GANs: Solving Indescribable Problems (Generative Adversarial Networks)

- How do we train a generative network to create new (original) images?
- Train a second CNN that judges the output of the generative CNN
- The generator must learn to "trick" the judge into thinking its output is from the true data
- Can be used to make simulated data look like experimental data

photo →Monet

CycleGAN

pix2pix

Motivation

- create a predictive AO controller
- Goals:
 - **Predictive** Mitigate servo lag by predicting future slopes
 - Denoising CNNs naturally produce images with low noise
 - General Purpose Should work under a wide range of seeing conditions and not be restricted to any particular type of telescope
 - Compare CNN architectures to determine which models work best

Use recent convolutional neural network and deep learning techniques to

Our Simulation Settings

- 8m Telescope Diameter
- 800 Hz Sampling Frequency
- 2 Frames of Delay
- 16 x 16 Order SH WFS
- 17 x 17 Order DM
- **R Band** NGS \bullet
- **K Band** Science Camera \bullet
- Pseudo Open Loop (POL) Control

- **3 Layer** Atmosphere
- **[0, 4, 10] km** Altitude
- **Frozen Flow** ullet

Data Generation

Run thousands of independent OOMAO simulations to generate data

- Variables to Randomize • Data to Save:
 - Classic Integrator Slopes
 - Ground Truth Slopes

- $r_0: 0.15 cm + / 0.02$
- Wind Direction: $[0, 2\pi)$
- Wind Speed: [5, 10, 15] km/s +/- [2.5, 5, 10]
- NGS Magnitude: 8-16

Network Models and Training

Our Models: Dense Network

- Takes in a 3D matrix of the slope maps (X, Y, Time)
- Uses information from the current slopes and 20 past loop steps
- Outputs a single set of slopes for time T+2 to mitigate the servo lag

Our Models: LSTM Network

- Takes in a single set of slopes at a time
- Extracts relevant information and saves it in its state for the next time step
- Outputs a single set of slopes for time T+2

Predictive Network Training

Open Loop Results

- Given a series of slopes (or wavefronts) our networks can very accurately predict several frames into the future
- However, this isn't how the integrator would be used in a closed loop system

Predictive Pseudo Closed Loop Operation

Closed Loop Results

Closed Loop Results

Adversarial Network Training

Pre-Designed Neural Networks

Our Models: Discriminator Network

Full Training Map: Discriminator Update Step

Full Training Map: Predictive Update Step

Closing The Loop With Adversarial Prior

Results

Final Results: Strehl Ratios

Strehl Ratio vs. NGS Magnitude

Final Results: Residual Wavefronts

Model Generalization

NGS Magnitude	
— 8 (Dense)	— 8 (LSTM)
••••••16	16

Residual Wavefront Power Spectral Density:

Classic Integrator 85.7% Strehl

Dense Network 85.8% Strehl

Magnitude 8

6.40 6.20 6.00 5.805.605.405.205.004.804.604.40

> LSTM Network 86.1% Strehl

PSD Ratio Images:

Classic / Dense Ratio Image

Magnitude 8

Dense / LSTM Ratio Image

PSD Ratio Images:

Classic / Dense Ratio Image

Magnitude 8

Ratio Image

Residual Wavefront Power Spectrum Density:

Classic Integrator 42.4% Strehl

Magnitude 16

LSTM Network 63.0% Strehl

PSD Ratio Images:

Magnitude 16

Ratio Image

Conclusions

- Closed loop integrators can be trained robustly with a GAN prior
- Our CNN models outperform classical methods under all conditions
- LSTM models greatly improve servo-lag at low magnitudes
- Dense, feed-forward, networks perform better at removing noise at high magnitudes

Future Work & Directions

• From Simulation to Hardware:

- Implement our models on an AO bench
- Apply this knowledge to real systems (MMT, GIRMOS)
- Optimization and real-time implementation
- Explore GAN methods for creating realistic training data from experimental data
- Improving our Models:
 - Further investigate low-frequency PSD effects
 - Train and test for more specific use cases (i.e., high contrast scenario)
 - Integrate new CNN architecture techniques

Predictive AO Control with Convolutional Neural Networks

Robin Swanson, Masen Lamb, Carlos Correia, Suresh Sivanandam, Kyros Kutulakos robin@cs.toronto.edu