

The Gran Telescopio Canarias Adaptive Optics system: getting ready for the sky

Icíar Montilla on behalf of the GTCAO team

Contents

- GTCAO system overview
- Optical bench calibration system and tools
- Laboratory results
- Ongoing work: calibrations and tests
- GTCAO and LGS schedule

GTC Adaptive Optics System

Mode	Single conjugate correction, NGS (first light) 1 LGS (HOWFS) + NGS tip-tilt (upgrade)	
Wavelength range	<mark>1.0-2.5μm</mark> (goal 0.8-5.0μm)	
Strehl ratio (good seeing)	Bright NGS on axis, SR≧0.65 @ 2.2μm (SR≧0.5 @ 2.2μm with LGS)	
	NGS m _R =14.5, SR≧0.1 @ 2.2μm (NGS m _R <18, SR≧0.1 @ 2.2μm)	
HO Wave-Front Sensor	Shack-Hartmann 20x20 (FOV 3.5" with NGS FOV 5" with LGS), EMCCD (240 x 240pix)	
TT Wave-Front Sensor	<mark>Shack-Hartmann</mark> 2x2 subap, EMCCD (240 x 240pix) (0.47-0.9 μm)	
Wave-Front Corrector	Deformable Mirror (21x21, 373 actuators, Fried Geometry)	
Seeing	Up to 1.5 arcsec	
Science FOV	Up to 1.5 arcmin	
Zenith distance	0-60º	
Exposure time	at least one hour	

GTCAO WaveFront Sensor

Shack-Hartmann WFS visible (0.47-1 μ m)

- High order 20 x 20 subap,
 3.5" FOV
- Low order 2 x 2 subap for LGS system
 FOV of 2 arcmin (XYZtranslator table)

OCAM camera: e2v CCD220, EMCCD detector 240x240 pix (0.35"/pix)

GTCAO calibration system: GTCSim and FieldSim

•

 GTC and Turbulence Simulator NGS Simulator (VIS and IR) LGS Simulator Phase Screen Aperture Simulator Focal Plane Unit Selects Telescope or Simulator beam Field Simulator IR and VIS sources across the 2' FOV Insertion Mirrors for Simulator

GTCAO calibration system: TestCam

- Test Camera based on a commercial InGaAs Xenics camera
- 320x256 pixels, 30 mm/pixel
- Plate scale 0.011 arcsec/pixel

GTCAO Toptica laser in the lab

GTCAO Laser Guide Star WFS

- Shack Hartmann WFS in Fried geometry (20x20 subapertures)
- Focus range: 80-200 km
- Plate scale: 0.6"/pix (FOV 7.2")
- OCAM2 camera 240x240 pix
- LWS dichroic in reflection: Na D2 (589±6nm)

Closing the loop in the lab

Tests Configuration:

- Laboratory: air-conditioning on, GTCAO without enclosure (local turbulence)
- WFC: No rotation
- Test Camera (science focus): H band filter
- WFS:
- High order lenslet array (20x20) with mask
- OCAM2 frame rate from 200 Hz to 1000 Hz
- Wide band filter (500 nm to 900 nm)
- Calibration System:
 - Visible and IR NGS in "bright star" configuration, on axis
 - Turbulence: $r_0=20$ cm good seeing, $r_0=7$ cm bad seeing, wind speed= 10 m/s)
 - GTC Pupil
- RTC:
- DARC, Regularized Least Squares algorithm
- Controller: simple integrator

Closing the loop in the lab

Closing the loop in the lab: measured Strehl

- 1. compute normalized theoretical diffraction-limited PSF with hexagonal pupil. Find maximum
- 2. subtract lab image background
- 3. normalize lab measured PSF
- 4. find maximum of normalized measured PSF (Gaussian fitting)
- 5. divide maximum of normalized lab PSF by maximum of normalized theoretical diffraction-limited PSF

Closing the loop in the lab: measured PSF

Bright star, r_0 =20 cm, close loop, H band

simulated PSF

GTCAO TestCam PSF

Closing the loop in the lab: PSD

- bright star, $r_0=20$ cm, 1000fps
- Power Spectral Density of the Tip, the Tilt and the higher Zernike modes till mode 40
- rejection of 2 orders of magnitude of the Tip and Tilt, and 3 orders of magnitude of the higher Zernike modes

But the lab is not the sky....

... "unfortunately", the Earth rotates. When tracking a science object a lot of mechanisms in an AO system have to move following the rotation of the Earth. We need to characterize and calibrate them to avoid NCPAs.

- FOV-related issues (field distortion, pupil displacement): calibration of the WFS pupil positioner
- Characterization and calibration of the XYZ WFS table
- Pupil rotation and characterization of the K-system
- Chromatic aberrations: system calibration for different filters and characterization of the ADC of the WFS
- NCPAs

FOV calibrations

The system suffers the classical barrel distortion: if not calibrated it would add a NCP TT to the science arm

- the distortion is characterized using the field LEDs of the FPU
- WFS-X and WFS-Y have to be adjusted when NGS is off-axis

Pupil rotation and characterization of the K-system

The serrated shape of the secondary mirror rotates on the lenslet array that samples the pupil. This introduces partial vignetting of some apertures in the HOWFS, or light variations in the illumination area of the LOWFS.

Thanks to the central pinhole at the FPU, we have computed the rmx of the complete circular pupil. A threshold is set and the subapertures that are illuminated below it are discarded.

Chromatic aberrations

"Achromaticity is fiction"

We check the behavior of the system for different wavelengths with different filters.

WFS Atmospheric Dispersion Corrector

From the GTCAO WFS Optical Design doc:

"The ADC is designed to correct for the atmospheric dispersion between 470 and 900 nm and to give null angular deviation at 665 nm. It will not introduce significant chromatic aberrations at the pupil. The ADC is in the collimated beam and ensures that i<u>t will not introduce aberrations.</u>"

NCPAs

Diversity images commanding defocus in the DM CL Strehl changed from 0.88 to 0.98 @ 1.6 micron. Retrieved Zernike coefficients result in 49.8 nm wavefront rms.

0.2

100

200

300

sample

400

500

GTCAO and LGS schedule

MILESTONE	DATE
GTCAO AIV completed in lab – Acceptance tests	November 2021
	(TBC with GRANTECAN)
GTCAO commisioning at GTC	S1 2022
	(TBC with GRANTECAN)
Preliminary Design LGS	PDR May 2019
Laser system acceptance at IAC	December 2019
Detailed Design Laser Launch Telescope	April 2021
Detailed Design LGS system	T1 2022
Laser Launch Telescope acceptance at IAC	S1 2022
LGS Subsystems integration in laboratory	S2 2022
LGS AIV completed in lab – Acceptance tests	S1 2023
LGS commisioning at GTC	S2 2023

RISK: re-coating of the mirrors (at least OAPs) is strongly recommended before going to telescope. This may cause a delay of up to 4 months

Acknowledgement

GTCAO & LGS

This activity is funded by the Canary Islands Local Government, within the program "Canarias objetivo de progreso" promoted by the European Regional Development Fund of the European Union, operative program 2014-2020. It is pre-financed through a loan from the Spanish Ministry of Economy (State Secretary for Research), the support from the State Research Agency (AEI) of the Spanish Ministry of Science, Innovation and Universities (MCIU) and the European Regional Development Fund (FEDER) under grants with references EQC2018-005097-P and EQC2019-006713-P.

We acknowledge the collaboration of the staff of the Gran Telescopio Canarias, for the help, support, advice and participation during the developments of the GTCAO LGS project. This collaboration has been possible based on the agreement signed by IAC and GRANTECAN for the completion of the development of the GTC Adaptive Optics System.

We acknowledge also the collaboration of the European Southern Observatory (ESO). The team of the 4 Laser Guide Star Facility (4LGSF) of VLT has given support and advice along all the development of the GTCAO-LGS system. This collaboration has been possible based on the agreement signed by IAC and ESO for collaborative activity in Laser Guide Star technologies and field experiments.

