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Strong gravitational lensing

● Strong lensing regime: Elongated arcs and multiple images

● Galaxy evolution and dark-matter:     

–  Ideal probe of the total mass in the foreground lens galaxy    
–  Detailed studies of strongly magnified background galaxies

Credits: NASA, ESA

Cosmic Horseshoe (ESA, NASA)



  

Strong gravitational lensing

● Strongly lensed time-variable sources 

→ Time-delays and lens modeling

→ Measure of the Cosmic Expansion rate (Refsdal+1964) 

Credits: NASA, ESA

Fig. The lensed SN iPTF16geu 
(Goobar+2017).
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● Most lens galaxies are massive luminous red galaxies
   → Good news!

● Finding galaxy-scale strong lenses

● Simple binary classification problem?
● Need to exclude a wide range of contaminants:

– Spirals, ring galaxies, mergers, etc...
● Get rid of image artefacts automatically
● Ensure position/rotation invariance

Morphology of galaxy-scale strong lenses

Fig. Different galaxy types to be excluded (Huang+2021).

Wuyts+12
Dust, z=2.3, 
Swinbank+10

Cosmic Horseshoe (ESA, NASA)



  

● Using spectroscopy

e.g. SLACS, BELLS, BELLS-GALLERY, S4TM, 
SILO samples (Bolton+2006; Treu+2006; 
Koopmans+2006; Gavazzi+2007; Bolton et al. 
2008; Treu et al. 2009; Auger et al. 2009; 
Shu+2016; Shu+17; Talbot+2021) 

● Using single or multi-band imaging
● Arc-finder algorithms (Gavazzi+2014, 

Avestruz+2019)

● Principal component analysis 
(Joseph+2014; Paraficz+2016)

● Lens modeling and masking 
(Sonnenfeld+2018)

● Citizen-science projects 
(Marshall+2016, Sonnenfeld+2020)

● Visual inspection (Diehl+2017, Khullar+2021)

● Or …       Deep learning

How to find galaxy-scale strong lenses?

Very rare events → From 1/1000 down to 1/105

Wuyts+12

Fig. SLACS lens SDSSJ1627-0053 (Bolton+2008).

Fig. YATTALENS arcfinder applied to HSC (Sonnenfeld+2018).



  

● CNNs are supervised machine learning techniques optimized for image analysis 
(LeCun+1998)

Supervised machine learning classification

Training sample

Features
+ 

Labels

Target sample

Features



  

● Training phase

Neural Networks

Fig. Credit Leal-Taixe, Niessner 

x inputs
b biases
w weights
f activation functions

Loss function (e.g. binary cross-entropy)

Fig. Credit J. Brownlee



  

● CNNs are supervised machine learning techniques optimized for image analysis 
(LeCun+1998)

● Capture image characteristics by learning the coefficients of convolutional kernels

● Need at least 104 labelled images for training BUT only ~103 lenses known

Convolutional Neural Networks



  

Lens finding with CNNs

● Successfully applied over the last five 
years to 

● CFHTLS (Jacobs+2017)

● COSMOS HST (Pourrahmani+2018)

● KiDS (Petrillo+2017;+2019; Li+2020)

● DES (Jacobs+2019a,b)

● DECaLS (Huang+2020;+2021)

(Need a visual inspection stage)

→ Several hundred high-quality             
strong lens candidates 

Lens confirmation currently on-going

→ Systematically outperform non-ML 
techniques (Metcalf+2019)

DECaLS, Huang+2021

● KiDS, Petrillo+2019

Lens finding challenge, Metcalf+2019



  

Automated pipelines for wide-field surveys

Our main goals are

● Build lens finding pipelines for systematic searches

● Test extensively and prepare for LSST and Euclid

● Extend to strong lens modeling and photometric redshift estimation

Sherry Suyu Stefan Schuldt

Stefan Taubenberger Yiping Shu



  

Lens finding in PanSTARRS
 

Cañameras et al. 2020, A&A 644, 163

● Systematic search over the 3 billion sources detected by the Pan-STARRS 
3π survey (30 000 deg2) → 3 filters gri

● Simple cuts to exclude the Milky Way plane, stars, very faint galaxies

● Two-step approach optimized for wide-separation galaxy-scale lenses

1) a catalog-based neural network classification of source photometry, 

2) a CNN trained on multi-band images

Fig. PS1 sources after removing stars.



  

Design of PanSTARRS lens simulations
 

Cañameras et al. 2020, A&A 644, 163

Realistic lens simulations → the main ingredient for higher accuracies

● Major aspects

- realistic lens galaxies 
- good proxies of lens mass
- Einstein radius distributions
- number of multiple images
- source colors and morphologies
- inclusion of neighbours/artifacts
- good PSF models

● Match properties of PanSTARRS coadds

● Fully simulated data

→ Observed images + ray-tracing = 
Paint lensed arcs on survey stacks

Simulation 
pipeline 
Schuldt+2019



  

Design of PanSTARRS lens simulations
 

Cañameras et al. 2020, A&A 644, 163

Realistic lens simulations → the main ingredient for higher accuracies

● Major aspects

- realistic lens galaxies 
- good proxies of lens mass
- Einstein radius distributions
- number of multiple images
- source colors and morphologies
- inclusion of neighbours/artifacts
- good PSF models

Simulation 
pipeline 
Schuldt+2019



  

Step 1- Catalog-level neural network
 

Cañameras et al. 2020, A&A 644, 163

1) Aperture photometry of mocks in gri bands
→ 1.04”, 1.76”, 3.00”,  and 4.64” radii

→ color variations and radial gradients 

2) Photometry of 105 negative examples

● 105 + 105  Labelled examples

● Classify with a fully-connected network

● Safe: 0 known lenses excluded

Keep for CNN
classification

Random sources
Lens simulation Negative example

Blue arcs Red lens 
galaxy



  

Step 2- Convolutional neural network
 

Cañameras et al. 2020, A&A 644, 163

Classify image cutouts in gri bands

● Negative examples: LRGs, face-on spirals, rings, 
groups from GalaxyZoo + different fractions

● Tests on the CNN architecture
 

● Hyperparameter optimization
● Cross-validation and best epoch
● 12000 network candidates 

Data set splitting

105 lens simulations

105 negative examples

Train        Validation       Test

56%            14%       30%



  

Step 2- Convolutional neural network
 

Cañameras et al. 2020, A&A 644, 163

Testing the network predictions

● Using our test set 

– distribution of scores as a function of Einstein 
radius, lens magnitude, lens effective radius

→ depends on the data set construction...

● Using an independent set

– are known lenses recovered by the CNN?

→ 14/16 + higher scores when similar to mocks



  

PanSTARRS lens search results
 

Cañameras et al. 2020, A&A 644, 163

330 new high-quality lens candidates

● Recover known lenses

● One system confirmed in spectro

● Sample spectroscopic follow-up on-going

● PanSTARRS seeing and depth are major 
limitations

● False positives are problematic
Foreground LRG Lensed galaxy

Confirmed !Confirmed !

False positives



  

Testing lens finding pipelines

● Construction of the ground truth data is arbitrary → Need to carefully test the 
influence of the training set design on output classifications

● Performances measured on simulated data sets (Metcalf+2019)

● Imperfect generalization (see Lanusse+2018; Schaefer+2018; Davies+2019)

● Solutions are 1) more realistic lens finding challenge data or 2) observed data sets 

→  An independent test set from real survey data

→   Use existing Subaru Hyper Suprime-Cam imaging similar to forthcoming LSST

LSST baseline design, Ivezic+2019HSC survey status, PDR2, Aihara+2019



  

Testing lens finding pipelines

● Train/Validate + test on galaxy sets from HSC, same depth, 
same background properties, etc ...

● 220 known galaxy-scale lenses from HSC (SuGOHI)
● Test completeness for different configurations (arc morphology, 

source colors, etc ...)

● 50,000 non-lenses in COSMOS
● Quantify the number of false positives → representative of 

final classification on real data

● 1000 ambiguous cases in SpaceWarps (Sonnenfeld+2020)

Portion of the COSMOS field with HSC → We exclude 
known lens systems to measure the FPRs



  

Influence of network architecture and data processing

● Architectures previously improved using LSST/Euclid simulations (Lanusse+2018)

● We have tested different CNN architectures by varying number of layers, of filters per 
layer, convolutional kernel sizes, etc...

● Deeper ResNet generally help → depends on the data set

● sqrt stretching always helps → other data pre-processing and augmentation have little 
influence

● Remaining problems → difficult to recover >80% SuGOHI lenses while maintaining FPR 
< 0.01% + network predictions not perfectly rotation invariant



  

Influence of lens simulations

We have tested multiple combinations of positive/negative examples

● Highly-realistic lens simulation with
● Various distributions on physical parameters 

(e.g. natural/flat distributions in Einstein radius?) 
● Various selections of lens and source galaxies 

(colors, redshifts, ...)
● Various configurations (ratio of doubles/quads), 

min S/N, min μ

 → Parameter distributions play a major role (do not need to follow nature)

● Negative examples including
● Random non-lens galaxies, or boosted fractions of usual interlopers (spirals,  

rings, isolated LRGs, groups, etc…)
● Draw interlopers from GalaxyZoo + Unsupervised classifications

→ Need to include sufficient examples in each class for training



  

Dashed lines: ResNets
Solid and dotted lines: CNNs
Colours: Different data sets

Best network

Testing lens finding pipelines

Goal

Best network

Receiver Operating Characteristic (ROC) curves using SuGOHI known lenses and 
COSMOS non-lenses:

● Major improvements for specific networks and data sets

● Performance directly indicate behaviour on real survey data



  

New galaxy-scale lens candidates from HSC Wide
 

Cañameras et al. 2021, in prep.

Best ResNet applied to all extended sources (>0.8’’) from HSC Wide DR2

● ~6000 network recommendations → recover SuGOHI + several new candidates

● Brute force approach without strict catalog-level pre-selection works!

● Different sets of candidates from different methods with little overlap 

Fig. New ResNet high-quality lens candidates from HSC DR2.



  

Preparation for LSST

– Current ResNet sufficient for our lensed SN search

– Human inspection for HSC: 6000 network candidates = 1.5–3 hours   
→ x 50 for LSST (only for simple wide-separation lenses)

– General lens search vs targeted lens search

● Still too many false positives for clean lens selection + completeness not ideal

● Impossible to bypass visual inspection? → 1-10% of neural network 
recommendations are good candidates

Fig. False positives from HSC DR2.

Towards a systematic pipeline for LSST



  

Ideas to be tested

– Calibrate neural network scores as probabilities (Guo+2017)

– Combine with citizen science projects (Marshall+2016)

– Architecture level 
● Multiclass classification (Teimoorinia+2020)
● ResNet pre-trained in ImageNet database
● Invariant architecture (Schaefer+2018)
● Committees of networks: train multiple CNNs and                                 

combine to increase prediction stability (Schaefer+2018)
● Outlier detection (Margalef-Bentabol et al. 2020)
● Unsupervised learning (Cheng+2020) → for exotic lenses                                      

or in combination with supervised algorithms

– Data set level
● Masking neighbours
● Lens light subtraction 
● Denoising images
● Adding more bands 
● Classification & modeling

Towards a systematic pipeline for LSST

Fig. Unsupervised lens finding with (1) a convolutional autoencoder, 
and (2) a Bayesian Gaussian mixture model (Cheng+2020).



  

Predict lens mass profile parameters

– Traditional parameter fitting techniques

– Regression convolutional neural network 

● Start simple = Singular Isothermal Ellipsoid 
(position, ellipticity, axis ratio, Einstein 
radius)

● – Hezaveh+2017, Perreault-
Levasseur+2017, Bom+2019, 
Madireddy+2019, Park+2020, 
Pearson+2019, Pearson+2021 

→ Trained and tested mostly on fully-simulated 
data, or idealistic S/N or configurations

Efficient strong lens modeling

Fig. MCMC lens modeling for the 
Cosmic Horseshoe (Schuldt+2019).

Fig. Lens modeling with deep learning (Hezaveh+2017).



  

Efficient strong lens modeling
Stefan Schuldt – schuldt@mpa-garching.mpg.de

Schuldt et al. 2021, A&A 646, 126

Predict lens mass profile parameters

– Regression convolutional neural network 

● Singular Isothermal Ellipsoid (position, ellipticity, axis ratio, Einstein radius)

● Realistic lens simulations – train and test on HSC Wide griz to prepare for LSST

mailto:schuldt@mpa-garching.mpg.de


  

Efficient strong lens modeling
Stefan Schuldt – schuldt@mpa-garching.mpg.de

Schuldt et al. 2021, A&A 646, 126

Predict lens mass profile parameters

– Results are stable, e.g. for fainter lensed sources

– Future prospects (Schuldt et al., in prep.)

● Test deeper networks, model SIE + external shear, parameter uncertainties

● Direct comparison between neural networks and traditional MCMC modeling

Fig. HSC lenses in SuGOHI for 
validating the DL pipeline.

mailto:schuldt@mpa-garching.mpg.de


  

Photometric redshift estimation
Stefan Schuldt – schuldt@mpa-garching.mpg.de

Schuldt et al. 2021b, accepted

Predict photometric redshifts

– Regression convolutional neural network (d’Isanto+2018, Pasquet+2019) 

– More systematic pipeline – train and test on HSC Wide grizy to prepare for LSST

● Data set: galaxies without imaging artifacts and with ground truth redshifts from

(1) spectro surveys, (2) reliable photo-z in COSMOS (30 bands, Laigle+2016)

● Limit to mag < 25 and Kron radius >0.8” in i-band + masking + balanced data set

→ 105 examples for training a simple CNN

mailto:schuldt@mpa-garching.mpg.de


  

Photometric redshift estimation
Stefan Schuldt – schuldt@mpa-garching.mpg.de

Schuldt et al. 2021b, accepted

Predict photometric redshifts

– Training over 0 < z < 4, good performance, larger bias at z > 2

– Comparison with DEmP (Hsieh+2014), best method from 
HSC photo-z team (Nishizawa+2020) → identical test set

CNN estimates based on image cutouts are competitive

mailto:schuldt@mpa-garching.mpg.de


  

● Supervised machine learning greatly helps identify strong lenses

● Many false positives, visual inspection needed → impossible with LSST?

● Measure performance: to be tested on independent sets of observed images 

● CNNs for automated lens modeling: looks very promising, to be validated on real 
strong lens systems

● CNNs for photo-z estimates: competitive approach with broad applications, e.g. 
Rubin Observatory LSST, only requires magnitude and Kron radius cuts  → now 
combine CNNs with catalog-based photometric quantities?

Summary


