Seminaire pole ML/DL du CeSAM 4 Mai 2021



# Finding and modeling strong gravitational lenses with deep neural networks

Raoul Cañameras (MPA Garching)

rcanameras@mpa-garching.mpg.de

S. Schuldt, S. Suyu, Y. Shu, S. Taubenberger, T. Meinhardt, L. Leal-Taixe, et al.







### Strong gravitational lensing



- Strong lensing regime: Elongated arcs and multiple images
- Galaxy evolution and dark-matter:
  - Ideal probe of the total mass in the foreground lens galaxy
  - Detailed studies of strongly magnified background galaxies



# Strong gravitational lensing



 $\rightarrow$  Measure of the Cosmic Expansion rate (Refsdal+1964)

#### Morphology of galaxy-scale strong lenses

- Most lens galaxies are massive luminous red galaxies  $\rightarrow$  Good news!
- Finding galaxy-scale strong lenses
  - Simple binary classification problem?
  - Need to exclude a wide range of contaminants:
     Spirals, ring galaxies, mergers, etc...
  - Get rid of image artefacts automatically
  - Ensure position/rotation invariance



Cosmic Horseshoe (ESA, NASA)



Fig. Different galaxy types to be excluded (Huang+2021).

# How to find galaxy-scale strong lenses?

Very rare events  $\rightarrow$  From 1/1000 down to 1/10<sup>5</sup>

Using spectroscopy

e.g. SLACS, BELLS, BELLS-GALLERY, S4TM, SILO samples (Bolton+2006; Treu+2006; Koopmans+2006; Gavazzi+2007; Bolton et al. 2008; Treu et al. 2009; Auger et al. 2009; Shu+2016; Shu+17; Talbot+2021)

- Using single or multi-band imaging
  - Arc-finder algorithms (Gavazzi+2014, Avestruz+2019)
  - Principal component analysis (Joseph+2014; Paraficz+2016)
  - Lens modeling and masking (Sonnenfeld+2018)
  - Citizen-science projects (Marshall+2016, Sonnenfeld+2020)
  - Visual inspection (Diehl+2017, Khullar+2021)
    - Or ... Deep learning





Fig. SLACS lens SDSSJ1627-0053 (Bolton+2008).



Fig. YATTALENS arcfinder applied to HSC (Sonnenfeld+2018).

## Supervised machine learning classification

 CNNs are supervised machine learning techniques optimized for image analysis (LeCun+1998)



#### **Neural Networks**

• Training phase

Loss function (e.g. binary cross-entropy)

$$L(y, p) = -\frac{1}{N} \sum_{i=0}^{N} y_i \log(p_i) + (1 - y_i) \log(1 - p_i)$$



Fig. Credit Leal-Taixe, Niessner

#### **Convolutional Neural Networks**

- CNNs are supervised machine learning techniques optimized for image analysis (LeCun+1998)
- Capture image characteristics by learning the coefficients of convolutional kernels
- Need at least 10<sup>4</sup> labelled images for training BUT only ~10<sup>3</sup> lenses known



## Lens finding with CNNs

- Successfully applied over the last five years to
  - CFHTLS (Jacobs+2017)
  - COSMOS HST (Pourrahmani+2018)
  - KiDS (Petrillo+2017;+2019; Li+2020)
  - DES (Jacobs+2019a,b)
  - DECaLS (Huang+2020;+2021)

(Need a visual inspection stage)

# $\rightarrow$ Several hundred high-quality strong lens candidates

Lens confirmation currently on-going

 $\rightarrow$  Systematically outperform non-ML techniques (Metcalf+2019)



DECaLS, Huang+2021



| Name                        | Туре         | AUROC | $TPR_0$ | $TPR_{10}$ | Short description                 |
|-----------------------------|--------------|-------|---------|------------|-----------------------------------|
| CMU-DeepLens-Resnet-ground3 | Ground-based | 0.98  | 0.09    | 0.45       | CNN                               |
| CMU-DeepLens-Resnet-Voting  | Ground-based | 0.98  | 0.02    | 0.10       | CNN                               |
| LASTRO EPFL                 | Ground-based | 0.97  | 0.07    | 0.11       | CNN                               |
| CAS Swinburne Melb          | Ground-based | 0.96  | 0.02    | 0.08       | CNN                               |
| AstrOmatic                  | Ground-based | 0.96  | 0.00    | 0.01       | CNN                               |
| Manchester SVM              | Ground-based | 0.93  | 0.22    | 0.35       | SVM/Gabor                         |
| Manchester2                 | Ground-based | 0.89  | 0.00    | 0.01       | Human Inspection                  |
| ALL-star                    | Ground-based | 0.84  | 0.01    | 0.02       | Edges/gradiants and Logistic Reg. |
| CAST                        | Ground-based | 0.83  | 0.00    | 0.00       | CNN/SVM                           |
| YattaLensLite               | Ground-based | 0.82  | 0.00    | 0.00       | SExtractor                        |

#### Lens finding challenge, Metcalf+2019

#### Automated pipelines for wide-field surveys

Our main goals are

- Build lens finding pipelines for systematic searches
- Test extensively and prepare for LSST and Euclid
- Extend to strong lens modeling and photometric redshift estimation





Sherry Suyu



Stefan Taubenberger Yiping Shu



Stefan Schuldt





### Lens finding in PanSTARRS

Cañameras et al. 2020, A&A 644, 163

- Systematic search over the 3 billion sources detected by the Pan-STARRS  $3\pi$  survey (30 000 deg<sup>2</sup>)  $\rightarrow$  3 filters *gri*
- Simple cuts to exclude the Milky Way plane, stars, very faint galaxies
- Two-step approach optimized for wide-separation galaxy-scale lenses
  - 1) a catalog-based neural network classification of source photometry,
  - 2) a CNN trained on multi-band images





Fig. PS1 sources after removing stars.

# **Design of PanSTARRS lens simulations**

Cañameras et al. 2020, A&A 644, 163

#### Realistic lens simulations $\rightarrow$ the main ingredient for higher accuracies

- Major aspects
  - realistic lens galaxies
  - good proxies of lens mass
  - Einstein radius distributions
  - number of multiple images
  - source colors and morphologies
  - inclusion of neighbours/artifacts
  - good PSF models
- Match properties of PanSTARRS coadds
- Fully simulated data

→ Observed images + ray-tracing = Paint lensed arcs on survey stacks



Lens system with all components Color image based on gri filter

# **Design of PanSTARRS lens simulations**

Cañameras et al. 2020, A&A 644, 163

#### Realistic lens simulations $\rightarrow$ the main ingredient for higher accuracies

- Major aspects
  - realistic lens galaxies
  - good proxies of lens mass
  - Einstein radius distributions
  - number of multiple images
  - source colors and morphologies
  - inclusion of neighbours/artifacts
  - good PSF models





Lens system with all components Color image based on gri filter

#### Step 1- Catalog-level neural network

Cañameras et al. 2020, A&A 644, 163

 $-i)_{R3}$ 

g

1) Aperture photometry of mocks in *gri* bands  $\rightarrow$  1.04", 1.76", 3.00", and 4.64" radii

 $\rightarrow$  color variations and radial gradients

2) Photometry of 10<sup>5</sup> negative examples

- 10<sup>5</sup> + 10<sup>5</sup> Labelled examples
- Classify with a fully-connected network
- Safe: 0 known lenses excluded





# Step 2- Convolutional neural network

#### Cañameras et al. 2020, A&A 644, 163



#### Classify image cutouts in gri bands

- Negative examples: LRGs, face-on spirals, rings, groups from GalaxyZoo + different fractions
- Tests on the CNN architecture
- Hyperparameter optimization
- Cross-validation and best epoch
- 12000 network candidates





0.7

0.6

0.5 SSO 0.4

0.3

0.2

0.1

10

20

30

Epoch

40

50

#### Step 2- Convolutional neural network

Cañameras et al. 2020, A&A 644, 163

Testing the network predictions

• Using our test set

− distribution of scores as a function of Einstein radius, lens magnitude, lens effective radius
→ depends on the data set construction...

- Using an independent set
  - are known lenses recovered by the CNN?
  - $\rightarrow$  14/16 + higher scores when similar to mocks





#### PanSTARRS lens search results

Cañameras et al. 2020, A&A 644, 163

330 new high-quality lens candidates

Recover known lenses

0.990, 3.00

PS1J2226+0041

0.919, 3.00

PS1J0919+0336

- One system confirmed in spectro
- Sample spectroscopic follow-up on-going
- PanSTARRS seeing and depth are major limitations

0.951, 3.00

PS1J1647+1117

0.999, 3.00

PS1J0324-1020

• False positives are problematic

1.000, 3.00

PS1J1821+7130

0.933, 3.00

PS1J0353-1706



#### Testing lens finding pipelines

- Construction of the ground truth data is arbitrary → Need to carefully test the influence of the training set design on output classifications
- Performances measured on simulated data sets (Metcalf+2019)
- Imperfect generalization (see Lanusse+2018; Schaefer+2018; Davies+2019)
- Solutions are 1) more realistic lens finding challenge data or 2) observed data sets
  - → An independent test set from real survey data
  - → Use existing Subaru Hyper Suprime-Cam imaging similar to forthcoming LSST

| Wide                     | g    | r    | i    | z    | y    |
|--------------------------|------|------|------|------|------|
| exposure (min)           | 10   | 10   | 16   | 20   | 16   |
| seeing (arcsec)          | 0.77 | 0.76 | 0.58 | 0.68 | 0.68 |
| depth (mag)              | 26.6 | 26.2 | 26.2 | 25.3 | 24.5 |
| saturation (mag)         | 17.6 | 17.4 | 18.0 | 17.5 | 17.3 |
| area (deg <sup>2</sup> ) | 942  | 1022 | 796  | 905  | 924  |
| Deep+UltraDeep           | g    | r    | i    | z    | y    |
| exposure (min)           | 49   | 45   | 65   | 130  | 88   |
| seeing (arcsec)          | 0.81 | 0.74 | 0.62 | 0.63 | 0.71 |
| depth (mag)              | 27.3 | 26.9 | 26.7 | 26.3 | 25.3 |
| saturation (mag)         | 18.1 | 18.2 | 18.7 | 17.7 | 17.3 |
| area (deg <sup>2</sup> ) | 35   | 35   | 35   | 36   | 36   |

| Quantity                                 | Baseline Design Specification      |  |  |  |
|------------------------------------------|------------------------------------|--|--|--|
| Optical config.                          | Three-mirror modified Paul-Baker   |  |  |  |
| Mount config.                            | Alt-azimuth                        |  |  |  |
| Final <i>f</i> -ratio, aperture          | <i>f</i> /1.234, 8.4 m             |  |  |  |
| Field of view, étendue                   | 9.6 $deg^2$ , 319 $m^2 deg^2$      |  |  |  |
| Plate scale                              | 50.9 $\mu$ m/arcsec (0"2 pix)      |  |  |  |
| Pixel count                              | 3.2 gigapixels                     |  |  |  |
| Wavelength coverage                      | 320–1050 nm, <i>ugrizy</i>         |  |  |  |
| Single-visit depths, design <sup>a</sup> | 23.9, 25.0, 24.7, 24.0, 23.3, 22.1 |  |  |  |
| Single-visit depths, min. <sup>b</sup>   | 23.4, 24.6, 24.3, 23.6, 22.9, 21.7 |  |  |  |
| Mean number of visits <sup>c</sup>       | 56, 80, 184, 184, 160, 160         |  |  |  |
| Final (co-added) depths <sup>d</sup>     | 26.1, 27.4, 27.5, 26.8, 26.1, 24.9 |  |  |  |

HSC survey status, PDR2, Aihara+2019

# Testing lens finding pipelines

- Train/Validate + test on galaxy sets from HSC, same depth, same background properties, etc ...
- 220 known galaxy-scale lenses from HSC (SuGOHI)
  - Test completeness for different configurations (arc morphology, source colors, etc ...)
- 50,000 non-lenses in COSMOS
  - Quantify the number of false positives → representative of final classification on real data
- 1000 ambiguous cases in SpaceWarps (Sonnenfeld+2020)





## Influence of network architecture and data processing

- Architectures previously improved using LSST/Euclid simulations (Lanusse+2018)
- We have tested different CNN architectures by varying number of layers, of filters per layer, convolutional kernel sizes, etc...
- Deeper ResNet *generally* help  $\rightarrow$  depends on the data set
- sqrt stretching *always* helps → other data pre-processing and augmentation have little influence
- Remaining problems → difficult to recover >80% SuGOHI lenses while maintaining FPR < 0.01% + network predictions not perfectly rotation invariant</li>



# Influence of lens simulations

10<sup>3</sup>

10<sup>2</sup>

 $10^{1}$ 

100

0.2

1.0

 $\theta_{\rm F}$  [arcsec]

2.0



We have tested multiple combinations of positive/negative examples

- Highly-realistic lens simulation with
  - Various distributions on physical parameters (e.g. natural/flat distributions in Einstein radius?)
  - Various selections of lens and source galaxies (colors, redshifts, ...)
  - Various configurations (ratio of doubles/quads), min S/N, min μ

 $\rightarrow$  Parameter distributions play a major role (do not need to follow nature)

- Negative examples including
  - Random non-lens galaxies, or boosted fractions of usual interlopers (spirals, rings, isolated LRGs, groups, etc...)
  - Draw interlopers from GalaxyZoo + Unsupervised classifications

 $\rightarrow$  Need to include sufficient examples in each class for training

#### Testing lens finding pipelines

Receiver Operating Characteristic (ROC) curves using SuGOHI known lenses and COSMOS non-lenses:

- Major improvements for specific networks and data sets
- Performance directly indicate behaviour on real survey data



#### New galaxy-scale lens candidates from HSC Wide

Cañameras et al. 2021, in prep.

Best ResNet applied to all extended sources (>0.8") from HSC Wide DR2

- ~6000 network recommendations  $\rightarrow$  recover SuGOHI + several new candidates
- Brute force approach without strict catalog-level pre-selection works!
- Different sets of candidates from different methods with little overlap



Fig. New ResNet high-quality lens candidates from HSC DR2.

#### Towards a systematic pipeline for LSST

#### Preparation for LSST

- Current ResNet sufficient for our lensed SN search
- Human inspection for HSC: 6000 network candidates = 1.5-3 hours  $\rightarrow x 50$  for LSST (only for *simple* wide-separation lenses)
- General lens search vs targeted lens search
  - Still too many false positives for clean lens selection + completeness not ideal
  - Impossible to bypass visual inspection?  $\rightarrow$  1-10% of neural network recommendations are good candidates

| 0.142             | 0.114             | 0.167             | 0.110             | 0.105             | 0.152             | 0.105             | 0.149             | 0.204             | 0.112             |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| 36407059083694279 | 36407187932722372 | 36411439950334400 | 36411581684255885 | 36411998296086241 | 36412286058891580 | 36416804364510986 | 36416941803438755 | 36416958983333528 | 36420665540090756 |
| 0.438             | 0.177             | 0.207             | 0.140             | 0.211             | 0.236             | 0.186             | 0.214             | 0.111             | 0.308             |
| ••                |                   | -                 |                   |                   |                   |                   |                   |                   |                   |
| 36421060677075466 | 36429444453256862 | 36433563326887726 | 36433855384650356 | 36437841114322931 | 36438648568152678 | 36438661453075661 | 36443196938536259 | 37466979702933606 | 37471373454479960 |

Fig. False positives from HSC DR2.

# Towards a systematic pipeline for LSST

#### Ideas to be tested

- Calibrate neural network scores as probabilities (Guo+2017)
- Combine with citizen science projects (Marshall+2016)
- Architecture level
  - Multiclass classification (Teimoorinia+2020) X
  - ResNet pre-trained in ImageNet database
  - Invariant architecture (Schaefer+2018)
  - Committees of networks: train multiple CNNs and combine to increase prediction stability (Schaefer+2018)
  - Outlier detection (Margalef-Bentabol et al. 2020)
  - Unsupervised learning (Cheng+2020) → for exotic lenses or in combination with supervised algorithms
- Data set level
  - Masking neighbours X
  - Lens light subtraction
  - Denoising images X
  - Adding more bands
  - Classification & modeling



**Fig.** Unsupervised lens finding with (1) a convolutional autoencoder, and (2) a Bayesian Gaussian mixture model (Cheng+2020).





# Efficient strong lens modeling

#### Predict lens mass profile parameters

- Traditional parameter fitting techniques
- Regression convolutional neural network
  - Start simple = Singular Isothermal Ellipsoid (position, ellipticity, axis ratio, Einstein radius)
  - Hezaveh+2017, Perreault-Levasseur+2017, Bom+2019, Madireddy+2019, Park+2020, Pearson+2019, Pearson+2021

 $\rightarrow$  Trained and tested mostly on fully-simulated data, or idealistic S/N or configurations





**Fig.** MCMC lens modeling for the Cosmic Horseshoe (Schuldt+2019).



# Efficient strong lens modeling

Stefan Schuldt – schuldt@mpa-garching.mpg.de Schuldt et al. 2021, A&A 646, 126

#### Predict lens mass profile parameters

- Regression convolutional neural network
  - Singular Isothermal Ellipsoid (position, ellipticity, axis ratio, Einstein radius)
  - Realistic lens simulations train and test on HSC Wide griz to prepare for LSST





## Efficient strong lens modeling

Stefan Schuldt – schuldt@mpa-garching.mpg.de Schuldt et al. 2021, A&A 646, 126

#### Predict lens mass profile parameters

- Results are stable, e.g. for fainter lensed sources
- Future prospects (Schuldt et al., in prep.)
  - Test deeper networks, model SIE + external shear, parameter uncertainties
  - Direct comparison between neural networks and traditional MCMC modeling





#### **Photometric redshift estimation**

Stefan Schuldt – schuldt@mpa-garching.mpg.de Schuldt et al. 2021b, accepted

#### Predict photometric redshifts

- Regression convolutional neural network (d'Isanto+2018, Pasquet+2019)
- More systematic pipeline train and test on HSC Wide grizy to prepare for LSST
  - Data set: galaxies without imaging artifacts and with ground truth redshifts from

     (1) spectro surveys, (2) reliable photo-z in COSMOS (30 bands, Laigle+2016)
  - Limit to mag < 25 and Kron radius >0.8" in i-band + masking + balanced data set
    - $\rightarrow$  10<sup>5</sup> examples for training a simple CNN







#### **Photometric redshift estimation**

Stefan Schuldt – schuldt@mpa-garching.mpg.de Schuldt et al. 2021b, accepted

#### Predict photometric redshifts

- Training over 0 < z < 4, good performance, larger bias at z > 2
- Comparison with DEmP (Hsieh+2014), best method from HSC photo-z team (Nishizawa+2020) → *identical test set*





4

#### <u>Summary</u>

- Supervised machine learning greatly helps identify strong lenses
- Many false positives, visual inspection needed  $\rightarrow$  impossible with LSST?
- Measure performance: to be tested on independent sets of observed images
- CNNs for automated lens modeling: looks very promising, to be validated on real strong lens systems
- CNNs for photo-z estimates: competitive approach with broad applications, e.g. Rubin Observatory LSST, only requires magnitude and Kron radius cuts → now combine CNNs with catalog-based photometric quantities?

