Seminaire pole ML/DL du CeSAM 4 Mai 2021

für Astrophysik

Finding and modeling strong gravitational lenses with deep neural networks

Raoul Cañameras (MPA Garching)

rcanameras@mpa-garching.mpg.de

S. Schuldt, S. Suyu, Y. Shu, S. Taubenberger, T. Meinhardt, L. Leal-Taixe, et al.

Strong gravitational lensing

- Strong lensing regime: Elongated arcs and multiple images
- Galaxy evolution and dark-matter:
	- Ideal probe of the total mass in the foreground lens galaxy
	- Detailed studies of strongly magnified background galaxies

Strong gravitational lensing

 \rightarrow Measure of the Cosmic Expansion rate (Refsdal+1964)

Morphology of galaxy-scale strong lenses

- Most lens galaxies are massive luminous red galaxies → **Good news!**
- Finding galaxy-scale strong lenses
	- Simple binary classification problem?
	- Need to exclude a wide range of contaminants: – Spirals, ring galaxies, mergers, etc...
	- Get rid of image artefacts automatically
	- Ensure position/rotation invariance

Cosmic Horseshoe (ESA, NASA)

Fig. Different galaxy types to be excluded (Huang+2021).

How to find galaxy-scale strong lenses?

Very rare events \rightarrow From 1/1000 down to 1/10⁵

• Using spectroscopy

e.g. SLACS, BELLS, BELLS-GALLERY, S4TM, SILO samples (Bolton+2006; Treu+2006; Koopmans+2006; Gavazzi+2007; Bolton et al. 2008; Treu et al. 2009; Auger et al. 2009; Shu+2016; Shu+17; Talbot+2021)

- Using single or multi-band imaging
	- Arc-finder algorithms (Gavazzi+2014, Avestruz+2019)
	- Principal component analysis (Joseph+2014; Paraficz+2016)
	- Lens modeling and masking (Sonnenfeld+2018)
	- Citizen-science projects (Marshall+2016, Sonnenfeld+2020)
	- Visual inspection (Diehl+2017, Khullar+2021)
		- Or … **Deep learning**

Fig. SLACS lens SDSSJ1627-0053 (Bolton+2008).

Fig. YATTALENS arcfinder applied to HSC (Sonnenfeld+2018).

Supervised machine learning classification

• CNNs are supervised machine learning techniques optimized for image analysis (LeCun+1998)

Neural Networks

Fig. Credit Leal-Taixe, Niessner

Convolutional Neural Networks

- CNNs are supervised machine learning techniques optimized for image analysis (LeCun+1998)
- Capture image characteristics by learning the coefficients of convolutional kernels
- Need at least 10⁴ labelled images for training BUT only \sim 10³ lenses known

Lens finding with CNNs

- Successfully applied over the last five years to
	- CFHTLS (Jacobs+2017)
	- COSMOS HST (Pourrahmani+2018)
	- KiDS (Petrillo+2017; + 2019; Li + 2020)
	- \cdot DES (Jacobs+2019a,b)
	- DECaLS (Huang+2020;+2021)

(Need a visual inspection stage)

→ **Several hundred high-quality strong lens candidates**

Lens confirmation currently on-going

 \rightarrow Systematically outperform non-ML techniques (Metcalf+2019)

DECaLS, Huang+2021

Lens finding challenge, Metcalf+2019

Automated pipelines for wide-field surveys

Our main goals are

- Build lens finding pipelines for systematic searches
- Test extensively and prepare for LSST and Euclid
- Extend to strong lens modeling and photometric redshift estimation

Stefan Taubenberger Yiping Shu

Sherry Suyu Stefan Schuldt

Lens finding in PanSTARRS

Cañameras et al. 2020, A&A 644, 163

- Systematic search over the 3 billion sources detected by the Pan-STARRS 3π survey (30 000 deg²) \rightarrow 3 filters *gri*
- Simple cuts to exclude the Milky Way plane, stars, very faint galaxies
- Two-step approach optimized for wide-separation galaxy-scale lenses
	- 1) a catalog-based neural network classification of source photometry,
	- 2) a CNN trained on multi-band images

Fig. PS1 sources after removing stars.

Design of PanSTARRS lens simulations

Cañameras et al. 2020, A&A 644, 163

Realistic lens simulations \rightarrow the main ingredient for higher accuracies

- **Major aspects**
	- realistic lens galaxies
	- good proxies of lens mass
	- Einstein radius distributions
	- number of multiple images
	- source colors and morphologies
	- inclusion of neighbours/artifacts
	- good PSF models
- Match properties of PanSTARRS coadds
- **Fully simulated data**

→ **Observed images + ray-tracing = Paint lensed arcs on survey stacks**

Design of PanSTARRS lens simulations

Cañameras et al. 2020, A&A 644, 163

Realistic lens simulations \rightarrow the main ingredient for higher accuracies

- **Major aspects**
	- realistic lens galaxies
	- good proxies of lens mass
	- Einstein radius distributions
	- number of multiple images
	- source colors and morphologies
	- - **inclusion of neighbours/artifacts**
	- good PSF models

Lens system with all components

Color image based on gri filter

Step 1- Catalog-level neural network

Cañameras et al. 2020, A&A 644, 163

 $\overline{\omega}$

1) Aperture photometry of mocks in *gri* bands \rightarrow 1.04", 1.76", 3.00", and 4.64" radii

 \rightarrow color variations and radial gradients

2) Photometry of $10⁵$ negative examples

- \cdot 10⁵ + 10⁵ Labelled examples
- Classify with a fully-connected network
- Safe: 0 known lenses excluded

Step 2- Convolutional neural network

Cañameras et al. 2020, A&A 644, 163

Classify image cutouts in gri bands

- Negative examples: LRGs, face-on spirals, rings, groups from GalaxyZoo + different fractions
- Tests on the CNN architecture
- Hyperparameter optimization
- Cross-validation and best epoch
- 12000 network candidates

Epoch

 0.7

 0.6

 0.5 $\overset{0}{\mathbf{5}}$ 0.4

 0.3

 0.2

 0.1

Step 2- Convolutional neural network

Cañameras et al. 2020, A&A 644, 163

Testing the network predictions

• Using our test set

– distribution of scores as a function of Einstein radius, lens magnitude, lens effective radius \rightarrow depends on the data set construction...

- Using an independent set
	- are known lenses recovered by the CNN?
	- \rightarrow 14/16 + higher scores when similar to mocks

PanSTARRS lens search results

Cañameras et al. 2020, A&A 644, 163

330 new high-quality lens candidates

• Recover known lenses

0.990, 3.00

PS1J2226+0041

0.919, 3.00

PS1J0919+0336

- One system confirmed in spectro
- Sample spectroscopic follow-up on-going
- PanSTARRS seeing and depth are major limitations

0.951, 3.00

PS1J1647+1117

0.999, 3.00

PS1J0324-1020

• False positives are problematic

1.000, 3.00

PS1J1821+7130

0.933, 3.00

PS1J0353-1706

Testing lens finding pipelines

- Construction of the ground truth data is arbitrary \rightarrow Need to carefully test the influence of the training set design on output classifications
- Performances measured on simulated data sets (Metcalf+2019)
- Imperfect generalization (see Lanusse+2018; Schaefer+2018; Davies+2019)
- Solutions are 1) more realistic lens finding challenge data or 2) observed data sets
	- → **An independent test set from real survey data**
	- Use existing Subaru Hyper Suprime-Cam imaging similar to forthcoming LSST

LSST baseline design, Ivezic+2019 HSC survey status, PDR2, Aihara+2019

Testing lens finding pipelines

- Train/Validate + test on galaxy sets from HSC, same depth, same background properties, etc ...
- 220 known galaxy-scale lenses from HSC (SuGOHI)
	- Test completeness for different configurations (arc morphology, source colors, etc ...)
- 50,000 non-lenses in COSMOS
	- Quantify the number of false positives \rightarrow representative of final classification on real data
- 1000 ambiguous cases in SpaceWarps (Sonnenfeld+2020)

Influence of network architecture and data processing

- Architectures previously improved using LSST/Euclid simulations (Lanusse+2018)
- We have tested different CNN architectures by varying number of layers, of filters per layer, convolutional kernel sizes, etc...
- Deeper ResNet *generally* help \rightarrow depends on the data set
- sqrt stretching *always* helps → other data pre-processing and augmentation have little influence
- Remaining problems \rightarrow difficult to recover >80% SuGOHI lenses while maintaining FPR < 0.01% + network predictions not perfectly rotation invariant

Influence of lens simulations

 $10³$

 $10²$

 10^{1}

 $10⁰$

 0.2

 1.0

 θ_F [arcsec]

 2.0

We have tested multiple combinations of positive/negative examples

- Highly-realistic lens simulation with
	- Various distributions on physical parameters (e.g. natural/flat distributions in Einstein radius?)
	- Various selections of lens and source galaxies (colors, redshifts, ...)
	- Various configurations (ratio of doubles/quads), min S/N, min μ

 \rightarrow Parameter distributions play a major role (do not need to follow nature)

- **Negative examples including**
	- Random non-lens galaxies, or boosted fractions of usual interlopers (spirals, rings, isolated LRGs, groups, etc…)
	- Draw interlopers from GalaxyZoo + *Unsupervised classifications*

 \rightarrow Need to include sufficient examples in each class for training

Testing lens finding pipelines

Receiver Operating Characteristic (ROC) curves using SuGOHI known lenses and COSMOS non-lenses:

- Major improvements for specific networks and data sets
- Performance directly indicate behaviour on real survey data

New galaxy-scale lens candidates from HSC Wide

Cañameras et al. 2021, in prep.

Best ResNet applied to all extended sources (>0.8'') from HSC Wide DR2

- \sim 6000 network recommendations \rightarrow recover SuGOHI + several new candidates
- Brute force approach without strict catalog-level pre-selection works!
- Different sets of candidates from different methods with little overlap

Fig. New ResNet high-quality lens candidates from HSC DR2.

Towards a systematic pipeline for LSST

Preparation for LSST

- Current ResNet sufficient for our lensed SN search
- Human inspection for HSC: 6000 network candidates = 1.5–3 hours \rightarrow x 50 for LSST (only for *simple* wide-separation lenses)
- General lens search vs targeted lens search
	- Still too many false positives for clean lens selection + completeness not ideal
	- Impossible to bypass visual inspection? \rightarrow 1-10% of neural network recommendations are good candidates

0.142	0.114	0.167	0.110	0.105	0.152	0.105	0.149	0.204	0.112
36407059083694279	36407187932722372	36411439950334400	36411581684255885	36411998296086241	36412286058891580	36416804364510986	36416941803438755	36416958983333528	36420665540090756
0.438	0.177	0.207	0.140	0.211	0.236	0.186	0.214	0.111	0.308
36421060677075466	36429444453256862	36433563326887726	36433855384650356	36437841114322931	36438648568152678	36438661453075661	36443196938536259	37466979702933606	37471373454479960

Fig. False positives from HSC DR2.

Towards a systematic pipeline for LSST

Ideas to be tested

- Calibrate neural network scores as probabilities (Guo+2017)
- Combine with citizen science projects (Marshall+2016)
- Architecture level
	- Multiclass classification (Teimoorinia+2020) \blacktriangleright
	- ResNet pre-trained in ImageNet database
	- Invariant architecture (Schaefer+2018)
	- Committees of networks: train multiple CNNs and combine to increase prediction stability (Schaefer+2018) √
	- Outlier detection (Margalef-Bentabol et al. 2020)
	- Unsupervised learning (Cheng+2020) \rightarrow for exotic lenses or in combination with supervised algorithms
- Data set level
	- \cdot Masking neighbours \times
	- Lens light subtraction
	- \cdot Denoising images \times
	- Adding more bands
	- Classification & modeling

Fig. Unsupervised lens finding with (1) a convolutional autoencoder, and (2) a Bayesian Gaussian mixture model (Cheng+2020).

Efficient strong lens modeling

Predict lens mass profile parameters

- Traditional parameter fitting techniques
- Regression convolutional neural network
	- Start simple = Singular Isothermal Ellipsoid (position, ellipticity, axis ratio, Einstein radius)
	- Hezaveh+2017, Perreault-Levasseur+2017, Bom+2019, Madireddy+2019, Park+2020, Pearson+2019, Pearson+2021

 \rightarrow Trained and tested mostly on fully-simulated data, or idealistic S/N or configurations

Fig. MCMC lens modeling for the Cosmic Horseshoe (Schuldt+2019).

Efficient strong lens modeling

Stefan Schuldt – schuldt@mpa-garching.mpg.de Schuldt et al. 2021, A&A 646, 126

Predict lens mass profile parameters

- Regression convolutional neural network
	- Singular Isothermal Ellipsoid (position, ellipticity, axis ratio, Einstein radius)
	- **Realistic lens simulations** train and test on HSC Wide *griz* to prepare for LSST

Efficient strong lens modeling

Stefan Schuldt – schuldt@mpa-garching.mpg.de Schuldt et al. 2021, A&A 646, 126

Predict lens mass profile parameters

- Results are stable, e.g. for fainter lensed sources
- Future prospects (Schuldt et al., in prep.)
	- Test deeper networks, model SIE + external shear, parameter uncertainties
	- Direct comparison between neural networks and traditional MCMC modeling

Photometric redshift estimation

Stefan Schuldt – schuldt@mpa-garching.mpg.de Schuldt et al. 2021b, accepted

Predict photometric redshifts

- Regression convolutional neural network (d'Isanto+2018, Pasquet+2019)
- **More systematic pipeline** train and test on HSC Wide *grizy* to prepare for LSST
	- Data set: galaxies without imaging artifacts and with ground truth redshifts from (1) spectro surveys, (2) reliable photo-z in COSMOS (30 bands, Laigle+2016)
	- Limit to mag \leq 25 and Kron radius \geq 0.8" in i-band + masking + balanced data set

 \rightarrow 10⁵ examples for training a simple CNN

Photometric redshift estimation

Stefan Schuldt – schuldt@mpa-garching.mpg.de Schuldt et al. 2021b, accepted

Predict photometric redshifts

- Training over $0 < z < 4$, good performance, larger bias at $z > 2$
- Comparison with DEmP (Hsieh+2014), best method from HSC photo-z team (Nishizawa+2020) → *identical test set*

Summary

- Supervised machine learning greatly helps identify strong lenses
- Many false positives, visual inspection needed \rightarrow impossible with LSST?
- Measure performance: to be tested on independent sets of observed images
- CNNs for automated lens modeling: looks very promising, to be validated on real strong lens systems
- CNNs for photo-z estimates: competitive approach with broad applications, e.g. Rubin Observatory LSST, only requires magnitude and Kron radius cuts \rightarrow now combine CNNs with catalog-based photometric quantities?

