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> A brief introduction to Hyperparameter Optimization
> What is it?
> Why do we need it?
> Practical tips

> Intro to some popular HPO algorithms
> Adaptive configuration selection
> Adaptive configuration evaluation

» Hyperparameter Optimization in CoE RAISE
> Machine-Learned Particle-Flow (in collaboration with CMS)
> HPO on HPC systems
> Model performance improvements
> Quantum-assisted Hyperparameter Optimization in CoE RAISE
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A brief introduction

to Hyperparameter >
Optimization |




What is Hyperparameter Optimization? (1/3) RAISE

> In Deep Learning (DL) we learn model parameters w using backpropagation
and gradient descent to minimize some objective, f(w, 6)

Model: M(x,w) =y

‘cat’: 0.89
‘napoleon’: 0.11
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Center of Excellence

RASE

ion? (2/3)

Imizat

What is Hyperparameter Opt

=Y

f is the final validation
loss after completed training,
f is not the model itself
Model: M (x, w)
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(HPO) is the process of tuning 6

> Hyperparameter Optimization
to improve performance
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What is Hyperparameter Optimization? (3/3)

> HPO is a black box optimization problem, we want to find
0" = arg mgn f(w, 8) but only get to query values of f, not
compute its gradient w.r.t. 8
> w: Model parameters (learned by gradient descent)
> 0: Hyperparameters
> f(w,8): What we're trying to minimize, e.g., validation loss
> f is non-differentiable w.r.t. 8

> f is often expensive to evaluate

» HPO Is compute-resource intensive
> Benefits greatly from HPC resources
> In need of smart, efficient search algorithms
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Why we need automatic hyperparameter optimization RAISE

Center of Excellence

> Very time consuming for humans, and
we do a bad job

ON THE STATE OF THE ART OF EVALUATION IN
NEURAL LANGUAGE MODELS

> Without good tuning, performance is Gabor Mel', Chris Dyer, Phl Bansom
likely left on the table hevvegsscdyer phlunson}égoogie. con
HUniversity of Oxford

> Good tuning is required to accurately
compare model architectures ABSTRACT

Ongoing innovations in recurrent neural network architectures have provided a
steady influx of apparently state-of-the-art results on language modelling bench-
marks. However, these have been evaluated using differing codebases and limited
computational resources, which represent uncontrolled sources of experimental

> | n 2 01 7/ |t Wa S S h OW n th at th e n rece ﬂt variation. We reevaluate several popular architectures and regularisation meth-

ods with large-scale automatic black-box hyperparameter tuning and arrive at the

a d V a N C e S Of S TOT A | N N I_ P W a S N Ot d U e somewhat surprising conclusion that standard LSTM architectures, when properly

regularised, outperform more recent models. We establish a new state of the art

to th e n Ovel arChItECtU reS, bu-t %IL tt:g ];g:; z;fzsb;{lk and Wikitext-2 corpora, as well as strong baselines on the
insufficient tuning of old architectures [1]

https://arxiv.org/abs/1707.05589
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Intro to popular HPO algorithms RAISE

Center of Excellence

> Model-free algorithms
> Grid search
> Random search

> Successive Halving (SHA)
> Hyperband = Adaptive configuration evaluation

> Asynchronous SHA (ASHA) .
> Evolutionary search

> Model-based algorithms = Adaptive configuration selection
» Bayesian optimization

> Hybrid algorithms

> Combines model-free and
model-based methods

05.04.2023 — CERN Data Science Seminar — Geneva — Eric Wulff 8



Grid and random search

> Grid search
> Deterministic
> Exhaustive search (on the grid)
> Uses same value several times

» Random Search
> Stochastic

> Exhaustive search (on the random
points)
> Explores more values of each HP

05.04.2023 — CERN Data Science Seminar — Geneva — Eric Wulff

RAISE

Center of Excellence

Grid Layout Random Layout
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Figure from: [2]James Bergstra and Yoshua Bengio: Random Search for Hyper-Parameter
Optimization, https://www.jmlr.org/papers/volumel3/bergstral2a/bergstral?a.pdf



https://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf

Adaptive

configuration
selection




Bayesian Optimization (1/4) ASE

Center of Excellence

> Bayesian Optimization (BO) is a black-box optimization technique for
expensive and/or noisy objectives

» Surrogate mode|
» Estimates f(0), given some HPs 6
> Estimates uncertainty of the objective function estimate
> Must be much faster than evaluating f

> Acquisition function
> Selects next HPs, 6, to evaluate
> Makes exploitation/exploration trade-off

> Popular choice: Expected Improvement (El), i.e.,, how much better is the next
observation going to be over our current best?

> Other choices include Probability of Improvement (Pl) and Upper Confidence Bound
(UCB)
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Bayesian Optimization (2/4)

> Let's visualize the BO process

> In this example we have
> a Gaussian Process as the surrogate model and

> use El as the acquisition function

05.04.2023 — CERN Data Science Seminar — Geneva — Eric Wulff

RAISE

Center of Excellence
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Bayesian Optimization (3/4) RAISE

Example US|ng GaUSS|an Pr‘ocess and EI Center of Excellence

1 T — El(x)
1 A“:\\‘\ 0.041 ° Ne):(t query point
‘f.lr \“Qs Fe
0 =778y i’,’ g - i
W ¢ /=== True {unknown 0.02
I N /= ot
> Choices of surrogate model NI -~

o

-2 -1 0 1 2 2 -1 0 1

> Gaussian Process (GP) N
> Closed form AN o
> Runtime complexity: 0(n®) "] ‘\ 7 em
» Random Forest ] oo |
» Ensemble of decision trees e ,;f‘\‘l\.\\_’,;\
> Faster than GP W "N }l,\ ,
> Runtime complexity: 0(nlog(n)) g e s ool M AN/
> Bayesian Neural Network NI AN o] \/\/\—A_/
> NN with uncertainty estimates built-in W 0005
> Very flexible L e A A
> Requires more training data 1
Tl A= b
> Tree-structured Parzen Estimator (TPE) NS Y
Y i — vl A NS

> Fast

> Simple and non-parametric 1]
> Runtime complexity: 0(nlog(n)) IR AN NI
‘\\a‘» N/ 0.01 A
-1 4
' | i | 0.00 1 - : : :
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Bayesian Optimization (4/4) RAISE

Center of Excellence

Tree-structured Parzen Estimator (TPE) [3] TPE advantages
> Instead of modelling p(y|x), model p(x|y) as > Simple and non-parametric
[(x),i < y* : :
> p(xly) = {g((?)ll];%, 23;* > Works well with mixed HP spaces
> 1(x) ,(g(x)), is a Kernel Density Estimator (KDE) > Runtime complexity: 0(nlog(n))

formed by all data points {x;} resulting in better,
(worse), performance than y*

> y* must be chosen to be worse than the best
observed

> A common choice is to set y* to the 15%
percentile of all observed points

» Maximizing El is equivalent to maximizing )

X
g(x)

[3] James Bergstra, Rémi Bardenet, Yoshua Bengio and Balazs Kégl, Algorithms for Hyper-Parameter Optimization (2011), Advances in Neural
05.04.2023 — CERN Data Science Seminar — Geneva — Eric Wulff Information Processing Systems, https://pbroceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf 14
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Parallel Bayesian Optimization RAISE

Center of Excellence

> BO as discussed up until now is sequential, it waits for an evaluation to complete
before selecting a new set of HPs to try

> With modern computing and HPC, we can run many trials in parallel

> Must ensure to never evaluate same 8 more than once since that would be very
inefficient

> One strategy Is to
> Evaluate some given number of trials to get a set of observations
> Pick next 8 as described previously

> If more recourses are available, modify acquisition function to penalize s that are
currently being evaluated but haven't completed yet

> One way of doing this is by reducing the variance of the surrogate model at those points, 8

05.04.2023 — CERN Data Science Seminar — Geneva — Eric Wulff 15
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Adaptive configuration evaluation

> It is possible to identify badly performing trials early so
why train them to convergence?

> Adaptive configuration evaluation strategies terminate
badly performing trials early

Some examples include:
» Successive Halving Algorithm (SHA)

» Terminate some fraction of trials according given stopping rate s

> Hyperband

» Loop over SHA using different stopping rates s

» Asynchronous Successive Halving Algorithm (ASHA)
> Async version of SHA

05.04.2023 — CERN Data Science Seminar — Geneva — Eric Wulff

MLPF loss

RAISE

Center of Excelle

Some MLPF Learning Curves

nce
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Successive Halving Algorithm — SHA RASE

> SHA [4] requires Rung 1 Rung 2 Rung 3 Rung 4
Number of HP configs, n A \ A Y A \
Max resource, R
Min resource, r 1 [ I — M@
Reduction factor, | | — M@ | |
Min early-stopping rate, s : : — M®3) :

> s determines how many rungs we do, ” | | M®

higher s means less rungs § ! | —M® |
: — (6

> In this example we have : : Mé; :
n=28R =100%,r = 12.5%,n = 2,5 = 0 | : —M(S) :

» Drawback: sensitive to stragglers | I — M |
> All trials within a rung must complete before | ' ' !

proceeding to next rung 0 I I | |
> Not suitable for large-scale HPC runs 12.5 25 Budget (%)50 100

Figure from: Yazdani Abyaneh, Amir Hossein & Krunz, Marwan. (2022). Automatic Machine
Learning for Multi-Receiver CNN Technology Classifiers

05.04.2023 — CERN Data Science Seminar — Geneva — Eric Wulff 18
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Successive Halving Algorithm — SHA RAISE

Center of Excellence

Algorithm 1 Successive Halving Algorithm.

L = run_then_returnval_loss(f,r;):0 €T
T = topk(T, L,n;/n)
end for

: : — Rung 1 Rung 2 Rung 3 Rung 4
input number of configurations n, minimum resource 1 1 1 1
r, maximum resource R, reduction factor 7, minimum { v v Y \
early-stopping rate s
Smax = [log, (R/T)] 1 I — O]
assert n > n°m=x~% g0 that at least one configuration will I @]
be allocated R. I I
T = get_hyperparameter_configuration(n) : e M(-?’) :
// All configurations trained for a given M(4-)
1 constitute a ‘‘rung.’’ “ | () |
fori e {0,...,Smax — s} do 5 | — M |
n; = [nn~"] | — M©) | |
ry =rn'ts | — |
I |
|
|
|
0

return best configuration in 7' : : I
SHA algorithm as defined by Lisha Li, Kevin Jamieson, Afshin Rostamizadeh, Katya 0 12 5 0
Gonina, Moritz Hardt, Benjamin Recht and Ameet Talwalkar, Massively Parallel ' 25 Budget ( A)) 50 1 0
Hyperparameter Tuning, Proceedings of Machine Learning and Systems (2018)
https://proceedings.mlsys.org/paper/2020/file/f4b9ec30ad9f68f89b29639786cbh Figure from: Yazdani Abyaneh, Amir Hossein & Krunz, Marwan. (2022). Automatic Machine
62ef-Paper.pdf Learning for Multi-Receiver CNN Technology Classifiers

05.04.2023 — CERN Data Science Seminar — Geneva — Eric Wulff 19



https://arxiv.org/abs/2204.13819
https://proceedings.mlsys.org/paper/2020/file/f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf

Hyperband

> Hyperband [5] loops over SHA using
different stopping rates s
> One less parameter to choose

> Choice of s can be important since learning
dynamics is highly problem dependent

> Potentially finds better solutions compared
to SHA (at cost of additional compute)

> Sensitive to stragglers

05.04.2023 — CERN Data Science Seminar — Geneva — Eric Wulff
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Hyperband: A Novel Bandit-Based Approach to
Hyperparameter Optimization

Lisha Li LISHAL@QCS.CMU.EDU
Carnegie Mellon University, Pittsburgh, PA 15213

Kevin Jamieson JAMIESON@CS. WASHINGTON.EDU
University of Washington, Seattle, WA 98195

Giulia DeSalvo GIULIAD@GOOGLE.COM
Google Research, New York, NY 10011

Afshin Rostamizadeh ROSTAMIQGOOGLE.COM
Google Research, New York, NY 10011

Ameet Talwalkar TALWALKAR@CMU.EDU

Carnegie Mellon University, Pittsburgh, PA 15213
Determined AT

Editor: Nando de Freitas

Abstract

Performance of machine learning algorithms depends critically on identifying a good set of
hyperparameters. While recent approaches use Bayesian optimization to adaptively select
configurations, we focus on speeding up random search through adaptive resource allocation
and early-stopping. We formulate hyperparameter optimization as a pure-exploration non-
stochastic infinite-armed bandit problem where a predefined resource like iterations, data
samples, or features is allocated to randomly sampled configurations. We introduce a novel
algorithm, HYPERBAND, for this framework and analyze its theoretical properties, providing
several desirable guarantees. Furthermore, we compare HYPERBAND with popular Bayesian
optimization methods on a suite of hyperparameter optimization problems. We observe
that HYPERBAND can provide over an order-of-magnitude speedup over our competitor set
on a variety of deep-learning and kernel-based learning problems.

[5] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, Ameet Talwalkar,
Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization, (2016)
https://arxiv.org/abs/1603.06560
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Asynchronous Successive Halving Algorithm — ASHA RAISE

Center of Excellence

Algorithm 2 Asynchronous Successive Halving (ASHA)  ASHA algorithm as defined by Lisha Li, Kevin

> ASHA's [6] asi/)nchronous nature eliminates input minimum resource 7, maximum resource R, reduc- °M¢*01 Ahin Rostamizaden, katva
Straggler prO |em tionfe.lctorn, minimum early-stopping rate s Ameet :I'alwalkar, Ma.’ssiveljy ParaII.eI
> Promotes trials to next rung whenever possible ~ “reen > VoL b il it el
- ffng promotions are possible fitiate new trials et ot e
) ru’n,then,return,val,loss(9, rp*tk) Ho ol
> Number of erroneously promoted trials B O ted job (0, ) with Ioss 1 do
expected to be small for large n Update configuration  inrung  with loss [
. c d fi
> The authors provide defaults which they antil desired
claim work well for a wide variety of end function
pro blems function get_job()
// Check if there is a promotable config.
> § = O,n = 4 for k = Llogn(R/r)J—s—l,?..,l,Odo ’
. candidates = top._k(rung k, [rung k|/n)
> Run for as |Ong as you |||(e promotable = {¢ € candidates : ¢ not promoted}
> Common sto . iter; th b f if [promotable| > 0 then
_ pgmg criteria are the number o return promotsblelo] k + 1
trials to evaluate, n, or reaching a given wall end if
tlme // If not, grow bottom rung.
. Draw random cgimﬁguration 0. ’
> Can be used to implement Asynchronous return 0,0
Hyperband by looping over values of s end for
end function

05.04.2023 — CERN Data Science Seminar — Geneva — Eric Wulff 21
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Some practical tips ASE

Center of Excellence

> Don't use a too narrow search space

> Don't use grid-search — very inefficient
> Random search is just as easy to implement but much more efficient

> Eliminate HPs that aren’t important
> Coarse to fine search

> Use appropriate scale when searching for HP values
> The sensitivity of the LR or the momentum parameter is much higher in certain
ranges (i.e., when LR is small, or beta is close to 1)

> Use three dataset splits, train, test, validation, one of which is only used
after for evaluation after completed HPO

05.04.2023 — CERN Data Science Seminar — Geneva — Eric Wulff 22
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CoE RAISE and Work Packages 2 & 4

> CoE RAISE: Center of Excellence for Research on Al- and
Simulation-based Engineering at Exascale

> Develop novel, scalable Artificial Intelligence technologies
> Use-cases from Engineering and Natural Sciences

> CERN (Dr. M. Girone) leads WP4: Data-Driven Use-Cases
towards Exascale

> Including Task 4.1 (E. Wulff): Event reconstruction and
classification at the CERN HL-LHC, more on this shortly

> UOI (Prof. M. Riedel) leads WP2: Al- and HPC-Cross
Methods at Exascale

> Provides expert support on HPC and Al methods to use-cases in
WP4

05.04.2023 — CERN Data Science Seminar — Geneva — Eric Wulff
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e Uol

e RTU
oFZJ

e RWTH
*FM

e BULL

e CERN

e CERFACS
*BSC

e CYI

e SAFRAN
e PARTEC
o TU DELFT

RAISE

Center of Excellence

CoE RAISE Partners

https://www.coe-raise.eu
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g
7 | Al at Center of Excellence
s Bt - = T e Exascale
data-driven use-cases il

> Representative use-cases from research and industry/SMEs, which have a
strong focus on data-driven technologies, i.e., analyzing data-rich
descriptions of physical phenomena

> Event reconstruction and classification at the CERN HL-LHC (CERN, RTU)

> develop novel apﬁroaches for HL-LHC collision event reconstruction replacing
traditional algorithms with Al-driven techniques towards HPC-to-Exascale

> Seismic imaging with remote sensing for energy applications (FZJ, UOI, CYI)

> optimize seismic imaging and remote sensing, enabling Al approaches, combining
satellite and airborne data with seismic imaging

> Defect-free metal additive manufacturing (UOI, FM)

» develop prediction models that detect porosity inside metal parts such that the
information is exploited to improve the product quality in additive manufacturing

> Sound engineering (FZJ, UOI)

» develop a deep-learning-based algorithm that associates individual anatomy to a
head-related transfer function (HRTF), for use in spatial audio systems

05.04.2023 — CERN Data Science Seminar — Geneva — Eric Wulff 25




Event reconstruction at the LHC ASE

Center of Excellence

> Event reconstruction attempts to solve the inverse problem of particle-detector interactions,
l.e., going from detector signals back to the particles that gave rise to them

> Particle-flow (PF) reconstruction takes tracks and clusters of energy deposits as input and
gives particle types and momenta as output

A
' neutral

\ hadron
1

Detector

Particle Flow

ECAL
clusters

05.04.2023 — CERN Data Science Seminar — Geneva — Eric Wulff 26



Al-based particle flow reconstruction workflow RAISE

Center of Excellence

Physics simulation Dataset creation ML training Trained model

s L
us
=5

M

A

1 neutral
% hadron
"

. Data pre-
Data selection

processing

‘. Model export
AN B2
=

!l CMS Simulation Preliminary
i| tt+ PU, /s =14 TeV

\ Machine-Learned Particle Flow reconst

Event

reconstruction =

4 7 Y . Charged hadrons . HFEM
e
/ & Neutral hadrons Eloctrons

Photons Muons

HFHAD

CMS Collision event MLPF event reconstruction 7]

[7] Pata, J., Duarte, J., Mokhtar, F., Wulff, E., Yoo, J., Vlimant, J.-R., Pierini, M., Girone, M. (2022). Machine

05.04.2023 — CERN Data Sci Semi -G — Eric Wulff . . . .
ata selence seminar=heneva = Eric i Learning for Particle Flow Reconstruction at CMS. Retrieved from



http://arxiv.org/abs/2203.00330

Machine-Learned Particle-Flow (MLPF) RAISE

Center of Excellence

The MLPF model

> The Particle Flow (PF) Algorithm [8] Sl o i S A e
> Tries to identify and reconstruct all stable individual o ," .
particles from collision events by combining -..:_, Graph _fﬁ_, — . "
information from different subdetectors (tracks, = FOX L) o %. o .

calorimeter clusters)

> Machine-Learned Particle-Flow (MLPF) [9] Target set ¥ = (y;) Output set ¥ = () |
> GPU accelerated, GNN-based algorithm for PF Elementwise loss L(y, ) _

classification & regression

—

» Code available on GitHub D byl w) =y
> See ACAT2021 talk by J. Pata (and proceedings) for Dt lgler;l-gfg,?EEECAL,fHCAEE,f,nm,a:omle;cﬁ---1 .
7 . . T = po E n,d, ql, none, charged hadron, neutral hadron, y,e~, u~, ...
more MLPF model details and ACAT 2021 talk by E. 777 ®e i
Wulff (and proceedings) for more details on the Trainable neural networks: , , 9
. ® - track, I - calorimeter cluster, @ - encoded element

hypertunlﬂg Of MI_PF - target (predicted) particle, - no target (predicted) particle

» See ACAT2022 poster for latest results Based on Evr. Phys. 1. C 81, 361 (2021

https://arxiv.org/abs/2101.08578

[8] CMS Collaboration https://cds.cern.ch/record/1194487?In=en [9] Pata, J., Duarte, J., Vlimant, JR. et al. MLPF: efficient machine-learned particle-flow reconstruction using
' T ' graph neural networks. Eur. Phys. J. C 81, 381 (2021). https://doi.org/10.1140/epijc/s10052-021-09158-w
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https://github.com/jpata/particleflow
https://indico.cern.ch/event/855454/contributions/4597457/
https://doi.org/10.1088/1742-6596/2438/1/012100
https://indico.cern.ch/event/855454/contributions/4598499/
https://doi.org/10.1088/1742-6596/2438/1/012092
https://indico.cern.ch/event/1106990/contributions/4998026/
https://doi.org/10.1140/epjc/s10052-021-09158-w
https://arxiv.org/abs/2101.08578
https://cds.cern.ch/record/1194487?ln=en

Large-scale distributed Hyperparameter Optimization

Ray Tune

.

tune

selection

Distributed HPO

train.py: tune.run

Trial m

[

(swae ) (o) ¢

Worker 1 Worker 2

Worker 1 [ Worker ZJ

)Cer] ¢

Worker n

Worker 1 ] [ Worker 2

e ¢

Worker n ]

Run 3 (14 TeV), tt, QCD with PUS0; u, i, mo, T, v, single particle guns

CMS Simulation Preliminary
Validation loss

0.10

0.08

0.0010

0.0008

0.06

0.04

0.02

aﬂ. '.0.‘,{‘.-\’

0.92

Top trials
— #1

#2
— #3
— #4
— #5
— #6

#7
—— #8

#9
— 10

" [10]

Assess learning ——
variability 1.75
£150

1.25

1.00

Run 3 (14 TeV), tt, QCD with PU50

—— Training loss
—— Validation loss

CMS Simulation Preliminary

Before hypertuning

Mean and standard deviation of 10 trainings
Final training loss: 1.57 +/- 0.15

Final validation loss: 1.55 +/- 0.12

0 25 50 75 100 125
Epochs

150 175 200

RAISE

Center of Excellence

» Using ASHA + Bayesian Optimization
> Scalable up to hundreds of GPUs

> Mean validation loss decreased by
~44% giving a significant
performance improvement

Run 3 (14 TeV), tt, QCD with PU50

—— Training loss
—— Validation loss

CMS Simulation Preliminary

After hypertuning

Mean and standard deviation of 10 trainings
Final training loss: 0.864 +/- 0.092

1.75 Final validation loss: 0.873 +/- 0.091

Better learning

81.50
g1

1.25

0 25 50 75 100
Epochs

125 150

[10]

05.04.2023 — CERN Data Science Seminar — Geneva — Eric Wulff

[10] E.Wulff, M. Girone, J. Pata, Hyperparameter optimization of data-driven Al models on
HPC systems, J. Phys.: Conf. Ser. 2438 012092 (2023) https://doi.org/10.1088/1742- 29
6596/2438/1/012092
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Center of Excellence

Scaling of MLPF hypertuning on multiple compute nodes RAISE

> Scaling of a hypertuning run of MLPF on the JURECA-DC-GPU system at the Julich Supercomputer Centre
(JSC), 4 NVIDIA A100 and 2x 64 cores AMD EPYC 7742 per nodé

> Superlinear scaling due to excessive re-loading of models when using fewer nodes
» Using the ASHA algorithm to schedule and terminate trials, in combination with Bayesian optimization

%104 Run 3 (14 TeV), tt with PU200 Run 3 (14 TeV), tt with PU200
—— Actual 71 —— Actual
------- Linear =+ Linear

5 61
— System: JURECA-DC-GPU
N 4x NVIDIA A100 GPU, 4x 40 GB HBM2e
— 4 2x AMD EPYC 7742, 2x 64 cores, 2.25 GHz a 5r
v S
E 2.
=3t @
I a
= 3}

2t

2t System: JURECA-DC-GPU
4x NVIDIA A100 GPU, 4x 40 GB HBM2e
2x AMD EPYC 7742, 2x 64 cores, 2.25 GHz
1 L
1 L
16 32 48 64 80 96 16 32 48 64 80 96
Number of GPUs Number of GPUs

Data used: [11] Simulated particle-level events of ttbar and QCD with PU200 using Pythia8+Delphes3 for machine learned particle flow (MLPF), https://doi.org/10.5281/zenod0.4559324
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Hypertuning tool of choice: Ray Tune RAISE

> Open-source tool for multi-node distributed
hyperparameter optimization 0% RAY

> Many built-in SOTA search algorithms

> ASHA
> Hyperband
> Bayesian Optimization ¥
> Population Based Training
> Supports TensorFlow, PyTorch and others 'I' une

> Supports integration of many other hypertuning tools
such as Scikit-Optimize, HyperOpt, Optuna, SigOpt,
etc.
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Using Ray Tune on SLURM clusters RAISE

Center of Excellence

> Ray expects a head-worker architecture
With a Single point Of entry jozziziigszfgﬂ;g:ﬁghostnamesSSLURM_JOB_NODELIST)

> Start a head node and multiple worker .
X . node_1=5inodes_array
nodes before running the Ray Tune script on  [EEEREs it S UL S EVE R

port=6379

the head node ip_head=Sip:$port

echo "IP Head: Sip_head"

> SOmetlmeS trICky 10 set up but once echo "STARTING HEAD at $node_1"

srun --nodes=1 --ntasks=1 -w Snode_1\
0 ray start --head --node-ip-address="Snode_1"i --port=Sport \
d O n e, It WO rkS g re at --num-cpus "S${SLURM_CPUS_PER_TASK}" --num-gpus "S$S{SLURM_GPUS_PER_TASK}" --block &

sleep 5

worker_num=S((SSLURM_JOB_NUM_NODES - 1))
for ((i=1; i<=Sworker_num; i++))
do

node_i=S${nodes_array[Si]}

echo "STARTING WORKER Si at Snode_i"

srun --nodes=1 --ntasks=1 -w S${node_i}\
ray start --address "Snode_1"i:"Sport" \

--num-cpus "${SLURM_CPUS_PER_TASK}" --num-gpus "${SLURM_GPUS_PER_TASK}" --block &
sleep 5
5 U I m -

python3 tune_script.py --cpus "S{SLURM_CPUS_PER_TASK}" --gpus "S{SLURM_GPUS_PER_TASK}"

workload manager gk
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Hypertuning MLPF on HPC systems RAISE

> Thanks to Forschungszentrum JUIich.(FZJ?, San Diego
Supercomputing Center (SDSC%, Flatiron [nstitute
(collaboration with CMS and CERN openlab)

> Using multiple compute nodes with 4 GPUs per node
> Both systems: 4 NVIDIA A100 40GB per node
> @CoreSite: 64 core Intel Icelake Platinum 8358 Run in part on the JUWELS Booster [2]  Image: @) JULICH
> @JUWELS: 2x 24 core AMD EPYC Rome 7402

> We did 2 stages of hypertuning:

> BOHB [12] - Bayesian Optimization combined with Hyperband
— using JUWELS Booster

> ASHA [2] + Bayesian Optimization [3] — using CoreSite
> ~76000 core-hours in total

n_graph layers ener

> Back of the envelope calculation shows that it would i o
have taken ~6 months on a single GPU instead of ~83 o , :
hours US|ng HPC SyStemS HPO studies done in: [10] E.Wulff, M. Girone, J. Pata, Hyperparameter optimization of data-driven Al models on

HPC systems, J. Phys.: Conf. Ser. 2438 012092 (2023)

[12] Falkner S, Klein A and Hutter F BOHB: robust and efficient hyperparameter optimization at scale
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HPO results

Using BOHB, a set of best hyperparameters were found
in the first search space

ASHA + Bayesian Optimization (BO) were used in the
second, larger, search space

Final best hyperparameters shown below

Variability check: best trial was re-trained 10 times and
achieved similar results

ASHA + BO

best_config =
BOHB {'bin_size": 64,
'distance_dim': 64,
'ffn_dist_hidden_dim": 128,
'ffn_dist_num_layers': 3,
'layernorm': 'False’,
'normalize_degrees': 'True’,

best_config =
{'clip_value_low'" 0.001998,
'dist_mult': 0.120898,

‘dropout’; 0.016312,
'Ir': 0.001129} 'num_graph_layers_common': 3,
'num_graph_layers_energy": 2,
'num_node_messages": 3,

‘output_dim': 64}

05.04.2023 — CERN Data Science Seminar — Geneva — Eric Wulff (2023)

RASE

Center of Excellence

From the final ASHA + BO search

Run 3 (14 TeV), tt, QCD with PU50; u, rT, o, T, Y, single particle guns

CMS Simulation Preliminary
Validation loss

0.10¢
0.08¢
" Validation classification loss .
Top trials
0.0010¢ #1
#2
#3
0.0008¢ #4
w w . — w w w #5
Validation regression loss #6
0.06] #7
#8
0.04¢ #9
#10
0.02; ‘ ‘ ‘ ‘
Validation classification accuracy
0.94¢
0.92¢ ‘ ‘ ‘ ‘ ‘ ‘ ‘
80 100 120 140 160 180 200
Epoch
[10]
[10] E.Wulff, M. Girone, J. Pata, Hyperparameter optimization of data-driven Al models on HPC systems, J. Phys.: Conf. Ser. 2438 012092 34
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Improvements from HPO RAISE

Center of Excellence

> Loss curves before (left) and after (right) hypertuning
> Only the physical datasets, no single particle gun samples
> Mean and standard deviation of 10 trainings with identical hyperparameters

> Mean validation loss decreased by ~44%

2.50 Run 3 (14 TeV), tt, QCD with PU50 2.50 Run 3 (14 TeV), tt, QCD with PU50
' —— Training loss ' —— Training loss
—— Validation loss —— Validation loss
2.25¢ 2.25¢
CMS Simulation Preliminary
2.00¢ 2.00¢ After hypertuning
Mean and standard deviation of 10 trainings
Final training loss: 0.864 +/- 0.092
1.75¢ 1.75¢ Final validation loss: 0.873 +/- 0.091
0 0
8 1.50¢ 8 1.50¢
| |
1.25¢ 1.25¢
1.00 1.00¢
CMS Simulation Preliminary
Before hypertuning
0.75 Mean and standard deviation of 10 trainings 0.75¢
Final training loss: 1.57 +/- 0.15
Final validation loss: 1.55 +/- 0.12

0.50

0 25 50 75 100 125 150 175 200 0.50 25 50 75 100 125 150 175 200

Epochs [1] Epochs [1]

HPO studies done in 2021 in: E.Wulff, M. Girone, J. Pata, Hyperparameter optimization of data-driven Al models on HPC systems, J. Phys.:
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Quantum-assisted

HPO in CoEk RAISE




>

>

>

>

>

Model performance prediction using QSVR RAISE

Current STOTA hypertuning algorithms rely
on early stopping

Stopping criterion: ranking according to a
single metric (e.g., validation loss)

Potential problem: loss curves are not linear

ldea 1. Use a non-linear stopping criterion
> For instance, an SVR model, inspired by [1]

ldea 2: Use quantum computing to fit a
Quantum-SVR (QSVR)

05.04.2023 — CERN Data Science Seminar — Geneva — Eric Wulff

Center of Excellence

<
Sample _ :: Terminate worst
[ random configs | : Train n epochs [ x% at last epoch

|

Decision point Target
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&

Loss
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Epoch

Approach inspired by [13] Bowen Baker, Otkrist Gupta, Ramesh Raskar, Nikhil Naik, Accelerating Neural

Architecture Search using Performance Prediction (2017) https://arxiv.org/abs/1705.10823 37
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Dataset creation RAISE

Center of Excellence

> Generated dataset consisting of learning curves

and HP Conﬂgs Some MLPF Learning Curves
> Run 300 MLPF trainings R I
> For each training, sample HPs from a 7-dimensional e |
search space N
> Train for 100 epochs on the publicly available Delphes 4 us. v
dataset [11] :
> Inputs: N
> HP configuration ey
> Partial learning curve
> 1%t and 2"d order differences of the partial learning curve *?t—7—F—F—————+——
30 40 50 60 70 80 90 100
> Targets Fpoch

> Final validation loss

05.04.2023 — CERN Data Sci Semi G Eric Wulff [11] Pata J et al. Simulated particle-level events of tt and QCD with PU200 using PYTHIA8+DELPHES3
o B ata science seminar —Geneva - Eric Wu for machine learned particle flow (MLPF), (2021), https://zenodo.org/record/4559324
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Accessing D-Wave Quantum Annealer in CoE RAISE RAISE

Center of Excellence

. . . N N
> A quantum annealer is a particular kind of quantum o ) = S Qumi; + > Qi

computer i<j i
> Solves QUBO problems (Quadradic Unconstrained Binary 7 €{0.1} and Q isa N x NV symmetric matrix
Optimization)
> SVR can be formulated as a QUBO problem [14] a |
> The annealer returns multiple solutions T
> Quantum annealing is a stochastic process =

> Challenges
> We can only fit 20 training samples
> Unstable results, guantum noise
> Limited quantum computing time available

Image from D-Wave documentation
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QSVR results RASE

Center of Excellence

> Predicting final loss from fraction of loss
curve (25%)

> QSVR results comparable to classical SVR 540 -
and to simulated quantum annealing

Best QSVR results

520 -

predicted loss

R? scores
480
Number of
Best Worst Mean Std trainings 460 -
SVR 0.959 0.318 0.889 0.050 1000 a0 1 €
Sim-QSVR 0949 0.383 0.901 0.045 100 440 460 480 500 520 540
QSVR 0.948 0.742 0.880 0.056 10 true loss

QSVR Ensemble 0.927 0.857 0.899 0.019 10
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Summary AISE

Center ol f Excellence

> Hyperparameter optimization could benefit any data-driven Al-based algorithm

> CoE RAISE develops novel, scalable Al methods towards Exascale
> Use-cases from a wide range of sciences and industry

> Large-scale distributed HPO significantly increased model performance in the
example use-case of Machine-Learned Particle Flow (MLPF)

> Would not have been possible without access to HPC resources

> The disruptive technology of Quantum Computing is already here and can be
integrated in hybrid Quantum-HPC workflows

> The technology is still very early-stage and is likely to improve greatly in the future
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Computational performance RAISE

Center of Excellence

_ 100 CMS Simu!a:tion :’re!iminary Run 3 (14 TeV)
z B2
> Key feature: avoid quadratic o 5
bottleneck, linear scaling of 5 60 5
runtime and memory usage £ w0 o
with input size 5 20- 5 | "
» Test was done using a single Y T
stream on 1 GPU with one event s o PrElements per event
Sfmulaltfon IPrehmfnary Run 3 (14 TeV)

3000

at a time (this is not a
production setting)

> GPU: NVIDIA RTX 20605

N
9
o
o

&aﬁum € uny DH1 |eddAL
\.

. [T

Maximum GPU memory used [MB]
G
o
o

[1]

1 1
0 5000 10000 15000 20000 25000 30000
PFElements per event

[1] Pata, J., Duarte, J., Mokhtar, F., Wulff, E., Yoo, J., Vlimant, J.-R., Pierini, M., Girone, M. (2022). Machine

.04.2023 —CERN D i i — — Eric Wulff . . . . .
05.04.2023 =€ ata Science Seminar —Geneva — Eric Wu Learning for Particle Flow Reconstruction at CMS. Retrieved from http://arxiv.org/abs/2203.00330
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TPE Algorithm [1] RASE

Center of Excellence

1. Define a hyperparameter search space
2. Create an objective function, £(6)
3. Get some of observations using randomly selected hyperparameters

4. Divide the scores into two groups based on some quantile. The first group (x1)
cct))ntalnst.observatlons that gave the best scores and the second one%xZ) - all other
observations,

5. Two densities [(x) and g(x) are modeled using Parzen Estimators (also known as
KDEs) which are a simple average of kernels céntered on existing data points,

6. Draw s_.amJ[oIe hyperparameters from [(x), evaluating them_in terms of g(x)/1(x), and
returning the sét that yields the minimum value under g(x)/1(x) corresponding to the
greatest'expected improvement. These hyperparameters are then evaluated on the
objective function.

7. Update the observations from step 3
8. Repeat steps 4-7 with a fixed number of trials or until time limit is reached

[1] James Bergstra, Rémi Bardenet, Yoshua Bengio and Balazs Kégl, Algorithms for Hyper-Parameter Optimization (2011), Advances in Neural
05.04.2023 — CERN Data Science Seminar — Geneva — Eric Wulff Information Processing Systems, https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf 47
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PF-based ground truth datasets for MLPF

> Simulated samples
> Inputs: PFElements

> Targets PFCandidates (reconstructed by current
baseline PF-algorithm)

> Using agenerator level truth would be better
but is left for a future study

> Mixture of physical samples with pile-up
(PU) and gun samples

> Generated under Run 3 conditions

> tag: auto:phasel_2021_realistic
> with CMSSW_12_1_0_pre3

> Data is split in train/test sets after shuffling
using an 80:20 split

05.04.2023 — CERN Data Science Seminar — Geneva — Eric Wulff

RAISE

Center of Excellence

sample fragment PU configuration | MC events
top-antitop pairs flat 55-75 20k
Z — 17 all-hadronic flat 55-75 20k
single electron flat p; € [1,100] GeV no PU 400k
single muon flat pr € [0.7,10] GeV no PU 400k
single ¥ flat pr € [0,10] GeV no PU 400k
single 7t flat py € [0.7,10] GeV no PU 400k
single 7 flat py € [2,150] GeV no PU 400k
single v flat pr € [10,100] GeV no PU 400k

Table 1: MC simulation samples used for optimizing the MLPF model.
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Generator-level-based ground truth datasets for MLPF

> Simulated samples
> Inputs: PFElements
> Targets: Gen-level ground truth

> Mixture of physical samples with pile-up
(PU) and gun samples

> Generated under Run 3 conditions

05.04.2023 — CERN Data Science Seminar — Geneva — Eric Wulff

Datasets

RAISE

Center of Excellence

physics process PU configuration | MC events
top quark-antiquark pairs flat 55-75 100k
QCD p; € [15,3000] GeV flat 55-75 100k
QCD 7y € [3000, 7000] GeV flat 55-75 100k
Z — 17 all-hadronic flat 55-75 100k
single e flat py € [1,1000] GeV no PU 10k
single u log-flat p € [0.1,2000] GeV no PU 10k
single 7t¥ flat pr € [0,1000] GeV no PU 10k
single 7r* flat py € [0.7,1000] GeV no PU 10k
single 7 flat pr € [1,1000] GeV no PU 10k
single v flat p € [1,1000] GeV no PU 10k
single p flat pr € [0.7,1000] GeV no PU 10k
single n flat pr € [0.7,1000] GeV no PU 10k

for training and validation.

Table 1: MC simulation samples used for optimizing the MLPF model.

The training datasets for MLPF are generated using CMSSW under Run3 conditions,

saving the PF elements as inputs, the MLPF truth as the target, and reconstructed PF

candidates as an additional cross-check that is not used for ML optimization. A mix of
samples with physical pileup conditions, as well as single particle gun samples are used
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MLPF architecture overview RAISE

Center of Excellence

> Fully connected feedforward networks are
Used fOI’ enCOdlng and deCOd|ng As an example (batch, elem, feat) = (2, 6400, 25)

Image: Joosep Pata

» Custom CombinedGraph layers are used
to dynamically build graphs and perform e g
message passing 2l

(2, 6400, 25)

ffn_charge
(2, 6400, 1)

> We use two stacks of CombinedGraph o caan 2o | . Sz [ o oorzse | oo e "erownns
| aye rS. concat
f . Stacked CombinedGraph (cg) layers, each builds a new (2, 6400, 14)
> one 10r momentu m reg ression graph in a learnable way and propagates information using
. o [ . h luti , andidates
> one for particle classification - i i B

| 1]

[1] Pata, J., Duarte, J., Mokhtar, F., Wulff, E., Yoo, J., Vlimant, J.-R., Pierini, M., Girone, M. (2022). Machine

.04.2023 —CERN D i i - — Eric Wulff . . . . .
05.04.2023 =€ ata Science Seminar —Geneva — Eric Wu Learning for Particle Flow Reconstruction at CMS. Retrieved from http://arxiv.org/abs/2203.00330
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The CombinedGraph layer

> A learnable embedding allows flexibility in
graph building

> Elements are binned into local context
areas

> A graph is built within each bin

> The graphs are disjoint but together they
represent the entire event

> One or more graph convolutions are
applied for message passing

> Elements are unbinned and returned

05.04.2023 — CERN Data Science Seminar — Geneva — Eric Wulff

As an example (batch, elem,
feat) = (2, 6400, 25) CombinedGraph:

input elements graph building + graph convolution
(2, 6400, 25) c -

N learnable embedding
i (2, 6400, 256)

bin nearby elements
(2, 10, 640, 256)

pairwise distance matrix
(2, 10, 640, 640)

N graph convolution 15 +128
d (2, 10, 640, 128)

one or multiple graph .~

convolutions for -~ graph convolution 128 =128
. (2, 10, 640, 128)
message passing

unbin
(2, 6400, 128)

RAISE

Center of Excellence

Image: Joosep Pata

Djj = exp (-|ei-ej]2) where
ei € R2%6 js the i-th element

output elements
(2, 6400, 128)

Uses built-in dense matrix, reshape and scatter/gather operations in TF.
Requires batch-mode graphs. No N2 allocation or computation needed. [1]

[1] Pata, J., Duarte, J., Mokhtar, F., Wulff, E., Yoo, J., Vlimant, J.-R., Pierini, M., Girone, M. (2022). Machine
Learning for Particle Flow Reconstruction at CMS. Retrieved from http://arxiv.org/abs/2203.00330
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BOHB (Bayesian Optimization Hyperband) RAISE

Center of Excellence

» Combination of Bayesian Optimization with
early stopping functionality of Hyperband [12]

> Using 12 compute nodes with:
> 4x NVIDIA A100 SXM4 40GB
> 2x AMD EPYC Rome 7402, 2x 24 cores @ 2.8 GHz

> Two different hypertuning runs:

> With ExponentialDecay
> Approximately 105.5 node-hours, or 10128 core-hours  [EESELESCEEgELl

search space = {

> Wlth COSIﬂeDeCaV "lr": loguniform(le-4, 3e-2),
. "expdecay decay steps": quniform(10, 2000, 10),
> Approximately 98.4 node-hours, or 9446 core-hours "dropout": uniform(0.0, 0.5),

"clip value low": uniform(0.0,
"dist mult": uniform(0.01, 0.2),

HPO studies done in 2021 in: E.Wulff, M. Girone, J. Pata, Hyperparameter optimization of data-driven Al models on HPC systems, J. Phys.:
Conf. Ser. 2438 012092 (2023) https://doi.org/10.1088/1742-6596/2438/1/012092

[12] Falkner S, Klein A and Hutter F BOHB: robust and efficient hyperparameter optimization at scale

05.04.2023 — CERN Data Science Seminar — Geneva — Eric Wulff (2018), https://arxiv.org/abs/1807.01774 52



https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/schedules/ExponentialDecay
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/schedules/CosineDecay
https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUWELS/JUWELS_node.html
https://arxiv.org/abs/1807.01774
https://doi.org/10.1088/1742-6596/2438/1/012092

ASHA + Bayesian Optimization RASE

> Thanks to SDSC and Flatiron Institute
> Using 12 compute nodes with 4 GPUs per node U e

N| €

S E
> 4x NVIDIA A100 SXM4 40GB N\
> 64 core Intel Icelake Platinum 8358 CPU @
2.60GHz Run on Flatiron Institute’s
> Approximately 886.4 node-hours or equivalently ——
56730 CPU core-hours search_space = |
"layernorm": choice([False, Truel),
"ffn dist hidden dim": choice([32, 64, 12
"ffn dist num layers": choice([1l, 2, 3, 4
. . "distance dim": choice([32, 64, 128, 256]
> Back of the envelope calculation: it would have mumnode messagesw: choice([1, 2, 3, 41)
taken ~6 months on a single GPU instead of ~83h Loum_graph_javers_common’: chotes(ll, 2,
num graph layers energy": choice([1, 2,

using HPC systems (for both stages)

"bin size": choice([l6, 32, 40, 64, 80]),

> Access to_HPC resources are essential for normalize degressn: choiee((Trae, Faleel),
Hypertuning complex Al models on large datasets "output_dim": choice([32, 64, 128, 256]),

. . X f HPO studies done in 2021 in: E.Wulff, M. Girone, J. Pata, Hyperparameter optimization of data-driven Al models on HPC systems, J. Phys.:
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https://docs.simonsfoundation.org/index.php/Public:Instructions_Iron_Cluster#GPU_nodes
https://doi.org/10.1088/1742-6596/2438/1/012092

D-Wave simulated annealing

> D-Wave's Ocean software provides

> neal.SimulatedAnnealingSampler ()

> Allows to test our algorithm in a controlled
way without using quantum computing time

> The annealer returns many solutions,
some of which are combined to produce
final QSVR model

> Techniques described in [14]

> Results are good — comparable to
classical SVR

Best Worst Mean Std Median Nu.m.ber el
trainings
Classical
SVR R? 0.959 0.318 0.889 0.050 0.900 1000
simulated | g 979 | 9383 0.901 0.045 0910 | 100
annealing R?
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RAISE

Center of Excellence

Different solution combination techniques

100 random splits with Simulated Annealing
train_size = 20, epsilon = 0.02, gamma = 0.01, C=67.61 and K= 3, B = 0.5, kO = 0.005, xi=0.01

mm Mean
. Median
mm Max

SCOMES Morm

scores softmax  scores IC norm  scores Ic softmax best set of alphas  simple mean min energy
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Quantum-SVR

> Predicting final loss

Best performing QSVR

scores Ic softmax

: 540 -
from fraction of loss e M
curve i ST 4
5 500 : ‘
> Comparable resultsto £, Ak
classical SVR and to o foe
simulated annealing o |2 (R?=0948]
> More stable results 50 g SHOL R
ClaSSi;f' SVR 1 0,959 0.318 0.889 0.050 0.900 1000
simulated | g9 0.383 0.901 0.045 0.910 100
annealing R
Quantl‘fm , | 0.048 0.742 0.880 0.056 0.897 10
annealing R
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10 random splits QSVR on QPU

Center of Excellence

train_size = 20, epsilon = 0.02, gamma = 0.01, C=67.61,K=3, B =0.5,
kO = 0.005, xi=0.01, num_reads=1000, chain_mult=10,

anneal_time=20,percentage_used=0.004

SCOMes norm

scores softmax  scores Ic norm  scores Ic softmax best set of alphas  simple mean

. Mean

. Max

min energy
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A one-layer fully connected feed-forward network RAISE

eeeeeeeeeeeeeeeeee

Model: M(x,w) =y
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RAISE

Center of Excellence

Classical SVR as performance predictor

> We first studied the problem using classical SVR

> Varying the know fraction of learning curve and size and contents of feature vector
> With >25% of epochs observed, we see an R? > 0.9

> We also studied the performance dependence on training set size

- w)* 1 _ i e;”
>y —»° > - )

MLPF performance predictor R™2 vs known fraction of leaming curve

> R2=1

MLPF performance predictor Train Size importance
fixed test size 50% total data

0.975 0951
0.950 - 0.90 7
0925 0.85 1
s (]
. 0.900 — curve + 1st + 2nd difs . 0.80 -
aurve & Train size = 20
0875 - = curve + 1st difs 075 *  Train size = 40
= curve + 2nd difs ' # Tain size = 50
0850 4 = top half curve 070 * Tain size = 60
= curve downsampled ) # Tain size = 80
0.825 curve without hps RE ® Tain size = 100

1 1
06 0.8 10

Known fraction of learning curve
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Classical SVR under restrictions RASE

Center of Excellence

Classical SVR R™2 distnbution 1000 runs:
train_size=20, test size=148

> We evaluate how well a classical SVR performs

when meeting same restrictions as the QSVR S[EEIET= s TS S

> Reduced training set: randomly draw 20 samples from =]

full training set 150

» Reduced feature vector: using only downsampled e |

learning curve as input 5 N

> Fit 1000 SVRs using same HPs -
£

2 50 -

25 1

Best Worst Mean Std Median L 0.3 04 05

R2 0.959 0.318 0.889 0.050 0.900
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