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Massive galaxy or galaxy cluster bends space-time

Strong lensing regime: Elongated arcs + multiple images of the background galaxy

Strong gravitational lensing

Credits: NASA, ESA Cosmic Horseshoe (ESA, NASA)



  

Strong gravitational lensing
 

1 - Static background sources, e.g. distant galaxies

Studies of galaxy evolution and dark-matter distribution:    

–  Total mass of the foreground lens galaxy/cluster      

–  High-resolution studies of magnified background galaxies

Credit: Lemon et al. (2023)



  

Multiple images appear at different times

 ➜ One-step physical measurement of cosmological distance

 ➜ Measure of the Cosmic Expansion rate (Refsdal 1964)

Illustration of lensed supernova event (credit: S. More)

Time delays t

t = 1/c x DΔt x Фlens

Time-delay 
distance: 
∝1/H0

Strong gravitational lensing
 

2 – Time-variable sources, e.g. quasars, supernovae

Credits: NASA, ESA

From lens 
modeling

Measured 
with light 
monitoring



  

Simple binary classification problem (lens vs nonlens) BUT

Strong lensing events are very rare  ➜  1 galaxy out of 104 or 105 in a given data set

Need to exclude a wide range of contaminants: Spirals, ring galaxies, mergers, etc…

Need to get rid of image artefacts automatically + Ensure position/rotation invariance

Fig. Examples of strong lens candidates from DECaLS Various types of nonlens contaminants (from Huang et al. 2021)

Searching for new strong gravitational lenses
 

Case of static galaxy-galaxy lensing systems



  

Supervised Deep Learning classification

e.g. in CFHTLS (Jacobs+2017); COSMOS HST 
(Pourrahmani+2018); KiDS (e.g., Petrillo+2017; +2019; 
Li+2020, Li+2021); DES (e.g., Jacobs+2019a,b, 
Rojas+2022); DECaLS (e.g., Huang+2020; +2021, 
Storfer+2022); CFIS (e.g., Savary+2022); DELVE (e.g., 
Zaborowski+2023)

systematically outperforms non-ML algos

e.g. Arc-finder algorithms (e.g., Gavazzi+2014, 
Avestruz+2019); Principal component analyses (e.g., 
Joseph+2014; Paraficz+2016); Lens modeling and 
masking (e.g., Sonnenfeld+2018); Citizen-science 
projects (e.g., Marshall+2016, Sonnenfeld+2020); Visual 
inspection (e.g., Diehl+2017, Khullar+2021)

Wuyts+12

YATTALENS arcfinder applied to HSC (Sonnenfeld+2018)

Searching for new strong gravitational lenses
 

Case of single or multi-band imaging data sets

Rubin LSST
105 new lenses 
(Collett 2015) 

Table. Results of lens-finding challenge (Metcalf+2019)



  

Supervised machine learning classification

Training sample

Features
+ 

Labels

Target sample

Features



  

Training phase

Neural Networks

Fig. Credit Leal-Taixe, Niessner 

x inputs
b biases
w weights
f activation functions

Loss function (e.g. binary cross-entropy)

Fig. Credit J. Brownlee



  

Convolutional Neural Networks

CNNs are supervised machine learning techniques optimized for image analysis (LeCun+1998)

Capture image characteristics by learning the coefficients of convolutional kernels

Need at least 104 labelled images for training BUT only ~103 lenses known



  

Several hundred candidates from CNNs in the literature

Elevated confirmation rate >80% (Tran et al. 2022)

BUT drastic pre-selection to cope with data volumes

We need fully automated, all-sky searches 
for current surveys and for Rubin LSST

+ Extend deep learning methods to mass modeling
and photometric redshift estimation

Automated pipelines for wide-field imaging surveys

Projects part of HOLISMOKES (Suyu+2020)
(Highly Optimized Lensing Investigations 
of Supernovae, Microlensing Objects, and 

Kinematics of Ellipticals and Spirals)

Fig. Follow-up of AGEL lenses (Tran+2022)



  

All-sky classification of static images
 

Cañameras et al. 2020, A&A 644, 163

Systematic strong-lens search over the Pan-STARRS 3π survey (30 000 deg2) 

  ➜ 3x109 sources to be classified

Realistic lens simulations for high classification accuracies

Need realistic lens galaxies, good proxies of lens mass, 
Einstein radius distributions, number of multiple images, 
source colors and morphologies

+ match properties of PanSTARRS coadds (sky background, 
inclusion of neighbours and artifacts, good PSF models, etc)

  ➜ Paint lensed arcs on survey stacks

  ➜ 105  labelled examples

Simulation 
pipeline 
(Schuldt+21)



  

All-sky classification of static images
 

Cañameras et al. 2020, A&A 644, 163

Systematic strong-lens search over the Pan-STARRS 3π survey (30 000 deg2) 

  ➜ 3x109 sources to be classified

  ➜ 2.3x107  after simple photometric cuts, star removal

Two-step approach to cope with huge data volume

  ➜ 1.0x106  after apply neural network on photometry

Keep for CNN
classification

Random 
sources



  

All-sky classification of static images
 

Cañameras et al. 2020, A&A 644, 163

Systematic strong-lens search over the Pan-STARRS 3π survey (30 000 deg2) 

  ➜ 3x109 sources to be classified

  ➜ 2.3x107  after simple photometric cuts, star removal

Two-step approach to cope with huge data volume

  ➜ 1.0x106  after apply neural network on photometry

 ➜ 1.2x104  after apply convolutional neural network 
on g, r, i-band image cutouts



  

Also successful on ~4 mag deeper imaging from 
HSC Wide survey (Cañameras et al. 2021, Shu et  
al. 2022)

Method for all-sky classification works + 
Applicable to the future Rubin LSST stacks

Confirmed !

All-sky classification of static images
 

Cañameras et al. 2020, A&A 644, 163; Cañameras et al. 2021, A&A 6, L6

330 new high-quality lens candidates from Pan-STARRS, 
follow-up on-going (Taubenberger et al., in prep.)   

Lens candidates from HSC (Shu et al. 2022)   



  

Confirmed !Confirmed !

All-sky classification of static images
 

Cañameras et al. 2020, A&A 644, 163; Cañameras et al. 2021, A&A 6, L6

BUT ALSO several false positives!330 new high-quality lens candidates from Pan-STARRS, 
follow-up on-going (Taubenberger et al., in prep.)   

After few hours of “expert” visual 
inspection of lens candidates

Also successful on ~4 mag deeper imaging from 
HSC Wide survey (Cañameras et al. 2021, Shu et  
al. 2022)

Method for all-sky classification works + 
Applicable to the future Rubin LSST stacks

Not fully automated due to number of contaminants 

Inspection of few 104 to 106 cutouts depending 
on survey depth



  

Confirmed !Confirmed !

All-sky classification of static images
 

Cañameras et al. 2020, A&A 644, 163; Cañameras et al. 2021, A&A 6, L6

BUT ALSO several false positives!330 new high-quality lens candidates from Pan-STARRS, 
follow-up on-going (Taubenberger et al., in prep.)   

Also successful on ~4 mag deeper imaging from 
HSC Wide survey (Cañameras et al. 2021, Shu et  
al. 2022)

Method for all-sky classification works + 
Applicable to the future Rubin LSST stacks

Not fully automated due to number of contaminants 

Inspection of few 104 to 106 cutouts depending 
on survey depth ➜ Strong biases? Grading and regrading (Shu et al. 2022)   



  

➜  Build test set from real survey data (e.g. HSC Wide)

● 220 known galaxy-scale lenses (SuGOHI project)

➜ Test completeness for different configurations

● 70,000 non-lenses in COSMOS

➜ Measure correct number of false positives 

Portion of the COSMOS field with HSC

Evaluation of supervised neural networks
 

How can we reduce human input?
 
Cañameras et al. 2023, arXiv:2306.03136

Metrics
➜ area under ROC
➜ TPR0 and TPR10 



  

The design of the ground-truth data set is key to improve performance

Interactive machine learning ➜ here by modifying the training sample iteratively

Test multiple combinations of positive examples (simulated lenses), fixing everything else

➜ Balanced data sets of about 105 examples

Evaluation of supervised neural networks
 
Cañameras et al. 2023, arXiv:2306.03136

Our goal

High 
AUROC but 
low TPR10



  

The design of the ground-truth data set is key to improve performance

Interactive machine learning ➜ here by modifying the training sample iteratively

Test multiple combinations of positive examples (simulated lenses), fixing everything else

➜ Balanced data sets of about 105 examples

Evaluation of supervised neural networks
 
Cañameras et al. 2023, arXiv:2306.03136

Parameter distributions chosen 
in simulations play a major role 
(no need to follow nature)

Our goal

Prediction 
nonlens!

Lens
Prediction 



  

The design of the ground-truth data set is key to improve performance

Interactive machine learning ➜ here by modifying the training sample iteratively

Test multiple combinations of negative examples (non-lenses), fixing everything else

➜ Balanced data sets of about 105 examples

Evaluation of supervised neural networks
 
Cañameras et al. 2023, arXiv:2306.03136

Drawing random non-lenses does not work

 ➜ Need to boost fractions of usual 
contaminants (spirals, rings, groups, etc)

 ➜ Use external citizen science projects or 
unsupervised ML classifications

Our goal



  

Fine-tuning the network architecture also plays a major role

Test multiple network architectures, fixing everything else

Evaluation of supervised neural networks
 
Cañameras et al. 2023, arXiv:2306.03136

ResNets not always better than 
classical CNNs for small image sizes 

Based on AlexNet
(Krizhevsky+2012)

Based on ResNet-18
(He+2016)



  

The processing of the ground-truth data set is important

Test multiple data augmentation techniques, fixing everything else

➜ Balanced data sets and baseline ResNet architecture

Evaluation of supervised neural networks
 
Cañameras et al. 2023, arXiv:2306.03136

Our goal

NN can learn when galaxies 
are centered “too perfectly”

Random rotations in data loader are 
sufficient to achieve rotation invariance

Square root stretches to the 
pixel values are helpful



  

● Major improvements for specific networks and data sets ➜ FPRs from 1% to 0.01%!
● Performance directly indicate behaviour on real survey data
● Recall at low contamination has significantly increased (see ROC curves)

Given class imbalance, still o(104) galaxies to eyeball ➜ How can we improve?

Best network

Dashed lines: ResNets
Solid and dotted lines: CNNs
Colours: Different data sets

Receiver Operating Characteristic (ROC) curves
using observed HSC lenses and non-lenses.

Evaluation of supervised neural networks - Summary
 
Cañameras et al. 2023, arXiv:2306.03136

Other tests completed 
Architecture level: group-invariant network 
architectures (e.g., Cohen+2016, 
Schaefer+2018)  -  networks pre-trained on 
ImageNet - multiclass classification (e.g., 
Teimoorinioa+2020) 
Data set level: Influence of the number of 
observing bands  -  Lens-light subtraction  -  
Masking of neighbouring galaxies  -  
Denoizing image cutouts  -  Deconvolving 
image cutouts  -  combining classification + 
modeling networks



  

Credit: Lemon et al. (2023)

Two pictures labelled as “horse” 
(Credit: Lapuschkin et al. 2019)

Robustness of neural network classification
 
Cañameras et al. 2023, arXiv:2306.03136

Has the model based its decision on a  
spurious correlation in the training data ?



  

Has the model based its decision on a  
spurious correlation in the training data ?

 ➜ Problems due to PSF mismatches        
between bands ?

 ➜ Some networks show systematic         
dependence with variations in seeing FWHM

 ➜ Add PSF frames as input with science frames

Credit: Lemon et al. (2023)

Robustness of neural network classification
 
Cañameras et al. 2023, arXiv:2306.03136

Opposite trends in 
r- and i-band seeing 

 ➜ color gradients

CNN candidates in GAMA09H



  

Interpretability of strong-lens finding neural networks
 

Examples of local methods

To constrain selection functions, improve performance, and identify biases ?

 ➜ Where is the most useful information for lens/nonlens classifications ?

 ➜ Visual inspection of feature maps: 
Initial vs. later layers (Jacobs+2022)
 

 ➜ Saliency mapping: Gradient-weighted 
Class Activation Mapping (Selvaraju+2017)

Layer 1 Layer 2 Layer 4



  

Interpretability of strong-lens finding neural networks
 

Examples of local methods

Credit: Lemon et al. (2023)

To constrain selection functions, improve performance, and identify biases ?

 ➜ Where is the most useful information for lens/nonlens classifications ?

 ➜ Sensitivity probes are easy to implement  ➜  Occlusion mapping (Zeiler & Fergus 2014)

● Annular masks centered on the central galaxy    
● CNNs “seem to” use relevant information (lensed arcs and multiple images)



  

Network ensembles are very efficient in decreasing false positive rates (Hansen+1990)

  ➜ Individual neural networks learn different representations

  ➜ Ensembles mitigate stochasticity of learning process, and lower the variance in output scores

  ➜ Combine networks, e.g. with different architectures (fixed training data, fixed augmentation)

 

Ensemble classifier for lensed quasar searches in HSC Wide images 
(Andika+2023)

Finding rare strong lenses in large data sets
 

Towards automated selections with deep, wide-scale surveys

Simple 
Average



  

Network ensembles are very efficient in decreasing false positive rates (Hansen+1990)

  ➜ Individual neural networks learn different representations

  ➜ Ensembles mitigate stochasticity of learning process, and lower the variance in output scores

  ➜ Combine networks with different architectures, different ground-truth, data augmentation

  ➜ Independent networks identify different populations of contaminants
 

Ensemble classifier 
for HSC Wide images 
(Holloway+2023)

Finding rare strong lenses in large data sets
 

Towards automated selections with deep, wide-scale surveys

Simple 
Average

Combine neural 
networks with 
Citizen Science

 ➜ Very different 
selection functions 
(Knabel et al. 2020)



  

Finding rare strong lenses in large data sets
 

Towards automated selections for deep, wide-scale surveys

Unsupervised learning algorithms 

  ➜ For direct, fully-automated classification of strong lenses (Cheng et al. 2020)

  ➜ Result in elevated contamination rates ... 

Lens finding with (1) a convolutional autoencoder, and (2) a Bayesian Gaussian mixture model (Cheng et al. 2020)

Strong lenses 
are too rare



  

Finding rare strong lenses in large data sets
 

Towards automated selections for deep, wide-scale surveys

Unsupervised learning algorithms 

  ➜ For direct, fully-automated classification of strong lenses (Cheng et al. 2020)

  ➜ For creating large catalogs of non-lens galaxies + retrain a supervised learning algorithm 

Lens finding with (1) a convolutional autoencoder, and (2) a Bayesian Gaussian mixture model (Cheng et al. 2020)

Strong lenses 
are too rare

Morphological groups from 
unsupervised classification of 
HSC Udeep (Martin et al. 2020)

Millions of 
objects for 
updated 
training set

50% 
Real non 

lenses

50% 
mock
lenses



  

Lens/source 
deblending with
a convolutional 

autoencoder 
(Savary+2022)

Finding rare strong lenses in large data sets
 

Towards automated selections for deep, wide-scale surveys

Unsupervised learning algorithms 

 ➜ for deblending image components (Savary+2022), or 
conducting image denoising (Cheng+2020) ?

Image denoizing with
a convolutional 
autoencoder 
(Cheng+2020)



  

Estimate mass profile parameters
  ➜ Singular Isothermal Ellipsoid + external shear and uncertainties

Regression convolutional neural network
(see also, e.g., Hezaveh+2017, Perreault-Levasseur+2017,
Madireddy+2019, Park+2020, Pearson+2019,+2021)

Efficient strong lens modeling with deep learning
 
Schuldt et al. 2021a, A&A 646, A126; Schuldt et al. 2023a, A&A 671, A147



  

Estimate mass profile parameters

Regression convolutional neural network
(see also, e.g., Hezaveh+2017, Perreault-Levasseur+2017,
Madireddy+2019, Park+2020, Pearson+2019,+2021)

● Realistic lens simulations  ➜ Train and test on HSC Wide 

● log-probability loss with a regularisation term

Efficient strong lens modeling with deep learning
 
Schuldt et al. 2021a, A&A 646, A126; Schuldt et al. 2023a, A&A 671, A147



  

Estimate mass profile parameters

Regression convolutional neural network

● Lens mass profile parameters are recovered
● Results are stable, e.g. for fainter lensed sources
● Translates into accurate predictions of image 

positions and time delays

Input
Output

Efficient strong lens modeling with deep learning
 
Schuldt et al. 2021a, A&A 646, A126; Schuldt et al. 2023a, A&A 671, A147



  

Neural network vs traditional modeling

● Use galaxy-scale strong lenses from HSC 
Wide (Sonnenfeld+2018, Wong+2018) to 
compare

(1) CNN-based modeling (Schuldt+2023a)

(2) Traditional MCMC sampling-based    
models with a semi-automated pipeline

Efficient strong lens modeling with deep learning
 
Schuldt et al. 2023b, A&A 673, A33



  

Neural network vs traditional modeling

● Use galaxy-scale strong lenses from HSC 
Wide (Sonnenfeld+2018, Wong+2018) to 
compare

(1) CNN-based modeling (Schuldt+2023a)

(2) Traditional MCMC sampling-based    
models with a semi-automated pipeline

Efficient strong lens modeling with deep learning
 
Schuldt et al. 2023b, A&A 673, A33



  

Photometric redshift estimation
 
Schuldt et al. 2021b, A&A 651, A55

Traditional photo-z codes
– Deblended photometry and fitting of the spectral energy distributions

Directly predict galaxy redshifts from multiband images
– Regression convolutional neural network (d’Isanto+2018, Pasquet+2019, Treyer+2023) 

– More systematic pipeline   ➜  Train and test on HSC Wide grizy to prepare for LSST

Redshift z

Redshift z

Polletta+2021



  

Photometric redshift estimation
 
Schuldt et al. 2021b, A&A 651, A55

Predict galaxy redshifts from images
– Regression convolutional neural network (d’Isanto+2018, Pasquet+2019, Treyer+2023) 

● Data set: galaxies without imaging artifacts and with ground truth redshifts from

(1) spectro surveys, (2) reliable photo-z in COSMOS (30 bands, Laigle+2016)

● Limit to mag < 25 and Kron radius >0.8” + masking + augmented data set
➜ 105 examples for training a simple CNN



  

Predict galaxy redshifts from images
– Training over 0 < z < 4, good performance, larger bias at z > 2

– Comparison with DEmP (Hsieh+2014), best method from HSC 
photo-z team (Nishizawa+2020) ➜ Identical test set

CNN estimates based on image cutouts are competitive

Photometric redshift estimation
 
Schuldt et al. 2021b, A&A 651, A55



  

● Supervised machine learning is key to identify rare objects, e.g. strong lenses
● All-sky classification pipeline works, but many contaminants + long visual inspection

● Full automation need systematic network evaluation on external, realistic test sets

  ➜ Major improvements for specific networks and data sets ➜ FPRs from 1% to 0.01%!
● Some networks learn spurious correlation in the training data  ➜ Need interpretability

● Ensembles of neural networks leverage diversity of individual models
● Unsupervised machine learning not ready for rare object identification

● ResNet for automated lens modeling + parameter uncertainties   ➜  Performance are 
promising + validated on real strong lens systems

● CNN for automated redshift estimates  ➜  Competitive approach with broad applications



  

Bonus slides



  



B1608+656 RXJ1131-1231 HE0435-1223 J1206+4332 

Suyu et al. 2013, 2014;
Tewes et al. 2013

Suyu et al. 2010 Wong et al. 2017; 
Rusu et al. 2017; 
Sluse et al. 2017; 
Bonvin et al. 2017

Birrer et al. 2019

WFI2033-4723

Bonvin et al. 2019; 
Sluse et al. 2019;
Rusu et al. 2019

Chen et al. 2019

PG1115+080

Fig. Light curve monitoring in COSMOGRAIL (Credit: V. Bonvin).

Cosmology with 6 lensed quasars: H0LiCOW project

Time delays from COSMOGRAIL + Lens modeling + Line-of-sight mass modeling

 ➜ H0 with 2.4% precision in flat ΛCDM (blind analysis)

Wong et al. 2020



  

Predict lens mass profile parameters

Efficient strong lens modeling
 
Schuldt et al. 2021a, A&A 646, A126



  

Predict photometric redshifts
– Morphological information helps

● New CNN trained on the same set ➜ replacing cutouts with point-like sources
● Larger scatter + larger bias at higher z

Without 
morphological
information

Photometric redshift estimation
 
Schuldt et al. 2021b, A&A 651, A55


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	H0LiCOW latest results
	Slide 45
	Slide 46

