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Presentation Plan

Context Of This Work : Deep Learning And Photometric Redshifts

First Contribution : Multimodality For Improved Photometric Redshifts

Second Contribution :  Application To The HSC Deep Survey
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First Contribution
 Multimodality For Improved Photometric Redshifts
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Correlation between the bands is indicative of the  galaxy SED

Suboptimal Input Processing ?
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Suboptimal Input Processing ?

Proposed Solution : Parallel processing of small sets of
bands (Multimodality)
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modality ? => Modality Size

How to group bands into a
modality ? => Modality Order
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Where in the network should
the processed modalities be
fused ? => Fusion Stage
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Using 2 band first and second order modalities, Early Fusion yields best results.
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Using first order modalities and early fusion, modalities of size two and more
produce optimal results
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Using 2 band modalities and early fusion, we see that First Order
modalities are the most important 
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2 band modalities
First order modalities

Most optimal and simplest configuration
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Improved metrics under various conditions
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Multimodality Dropout
one modality dropped at test time



Introduction of simple yet efficient method to

optimize CNN redshift estimations

Multimodality improves redshift estimation precision

independently of the dataset and the CNN depth

Multimodality achieves new state of the art redshift

precision on the SDSS MGS.

Multimodality dropout allows to isolate the effect of

bands correlation and study it.

Contribution Published : Ait-Ouahmed et al. 2023. A&A 



Second Contribution
Application To The HSC Deep Survey
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Building A Realstic Dataset

Previous application was not realistic
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30 band photometric redshifts from Weaver et al. (2022)
  4 different photometric redshifts  were estimated based
on different SED Fitting methods
The mean and standard deviation of these 4 redshifts are
computed, we retain the ones satisfying : 

Building A Realstic Dataset

COSMOS2020 For faint sources
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Building A Realstic Dataset

COSMOS2020 For faint sources
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Building A Realstic Dataset

Merging and smoothing
Using Self Orgnizing Maps,
spectroscopic sources are merged
with cosmos2020 optimizing
representativity and label quality
  Smoothing using the Kernel
density estimation technique
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Building A Realstic Dataset

Merging and smoothing
Using Self Orgnizing Maps,
spectroscopic sources are merged
with cosmos2020 optimizing
representativity and label quality
  Smoothing using the Kernel
density estimation technique

Result
Realistic representative dataset with

best redshift labels available  
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Initial Results
Good Overall Cross Validated Performance

MAD Outliers Fraction Bias

Mag i Mag i Mag i
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Initial Results
N(z) Retrieval Performance

Cross Validation Results
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Initial Results
N(z) Retrieval Performance

Inference on unlabeled set Results



S
ec

o
n

d
 C

o
n

tr
ib

u
ti

o
n

Domain Mismatch Problem
Different image acquisition conditions



S
ec

o
n

d
 C

o
n

tr
ib

u
ti

o
n

Domain Mismatch Problem
Different image acquisition conditions

XMM-LSS ULTRA DEEP

XMM-LSS DEEP

DEEP2-3



S
ec

o
n

d
 C

o
n

tr
ib

u
ti

o
n

Domain Mismatch Problem

Train on one field and infer on others (COSMOS Ultra Deep)
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Issue : Network unable to generalize
to other fields when trained on a

calibration field

Domain Mismatch Problem

Train on one field and infer on others (COSMOS Ultra Deep)
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Proposed Solution
Adversarial Domain Adaptation

Origins : Generative Adversarial Networks (GANs) 
Goodfellow et al. (2014)
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Proposed Solution

Adversarial Domain Adaptation,
The Architecture
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Proposed Solution

Potential issue : Negative Domain
Transfer

Source Domain Target Domain

Network encouraged to produce
indistinguishable representations
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Proposed Solution

Two Steps Fix : 
1 - Guided Batch Selection

Source Domain

For each source image, a corresponding target image
is selected based on photometric magnitude

Target Domain



S
ec

o
n

d
 C

o
n

tr
ib

u
ti

o
n

Source Domain

The selection are paired at the input of the
discriminator, which has to estimate if a pair comes
from the sam field or not

Proposed Solution

Two Steps Fix : 
1 - Guided Batch Selection
2 - Pairing The Selections

Target Domain

Discriminator Input
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Proposed Solution

XMM DEEP as a study case
Negative Transfer Solution

Training on COSMOS Ultra DEEP, Infering on XMM DEEP
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Proposed Solution

XMM DEEP as a study case

SED Fitting
Classical Cross Validation Results
(Not relaiable at faint magnitudes)

Training On COSMOS Ultra Deep With No DA Training On COSMOS Ultra Deep With DA
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Proposed Solution

XMM DEEP as a study case

Good N(z) Retrieval Performance With DA
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Proposed Solution

Independent Performance Test
[OII] Emission line galaxies selected from narrowband observations at redshiftz=1.47

COSMOS DEEP FIELD

ELAIS FIELD



Charecterization of the Domain Mismatch Problem

For CNNs In Deep Surveys

Adapted Solution using Adversarial Domain

Adaptation For Training on A Calibration Field And

Genralizing to other fields 

Contribution In Writing For Publication  
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