Galaxy redsfhit estimation from multi-band images with Deep Learning

Strengths and challenges

Reda Ait Ouahmed Stéphane Arnouts, Jérôme Pasquet, Marie Treyer

Observing and understanding the Universe

To understand the Universe

Theoritical models constrained by observations

FROM 2DTO3D

How can we measure galaxy distances?

Galaxy Spectrum

Adapted from Galliano et al. (2018)

Galaxy Spectrum Redshifted

$$z = (\lambda_{obs} - \lambda_{rest}) / \lambda_{rest}$$

Spectroscopy

Spectroscopy

Wavelength (Angstroms)

Spectroscopy and photometry

- High resolution view
- Precise redshift estimation
- Too slow

Redshift estimation from multiband photometric images

SED Fittting **Machine Learning** • **Deep Learning**

SED Fittting

1

Multiband photometric images **NsæchFrittieg**rning u r g Ζ Feature Extraction **Spectroscopic Dataset** Eluxes Eluxes Colors Colors Reference Marchingo Redshift validation and validation SED RTCP Estimate Theoretical -Templates Photometric $7 = 2\pi \sqrt{\frac{c}{g}}$ Redshift

Multiband photometric images **Machine Learning** u g r Feature Extraction Fluxes Colors Surface brightness Reference Redshift Learns Patterns **ML Model**

Spectroscopic Dataset

Multiband photometric images **Machine Learning** u r g Feature Extraction Fluxes Colors Surface brightness Reference Redshift **Learns Patterns** Validation and Validation Estimate Photometric **ML Model** Redshift

Galaxies 3D Mapping

Galaxies 3D Mapping

Photometric Redshift Estimation

Galaxies 3D Mapping

Photometric Redshift Estimation

Presentation Plan

Context Of This Work : Deep Learning And Photometric Redshifts First Contribution : Multimodality For Improved Photometric Redshifts Second Contribution : Application To The HSC Deep Survey

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0 & 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0 0 1	$\begin{array}{ccc} & & - \\ 0 & & 0 \\ 1 & & 0 \end{array}$	0 0 0 1		$\begin{array}{cccc} 0 & 1 & 1 & 1 \\ 0 & 0 & 0 \end{array}$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	1 1	1	1	1 0 1 1	1	0 0 1

Context Of This Work

Flattened feature maps

FFNN

Metrics of Photometric Redshifts

- Residuals: $\Delta z = (z_{\text{phot}} z_{\text{spec}})/(1 + z_{\text{spec}})$
- Normalized Mad (Median absolute deviation): Mad = $1.48 * Median(|\Delta z Median(\Delta z)|)$
- Outliers fraction: fraction of objects with $|\Delta z| \ge 0.15$ (or $|\Delta z| \ge 0.05$ for the SDSS)
- Bias: Bias = Mean(Δz)

48 * Median($|\Delta z - Median(\Delta z)|$)

Deep Leaning And Photometric Redshifts

Photometric redshifts from SDSS images using a Convolutional Neural Network

Johanna Pasquet¹, E. Bertin², M. Treyer³, S. Arnouts³ and D. Fouchez¹

Redshift Estimation With Deep Learning

es	σ	η	$<\Delta z>$					
	10 ⁻³	%	10^{-3}					
SDSS r < 17.8								
	9.08	0.31	0.04					
21)	8.98	0.19	0.07					
021)	8.25	0.21	0.1					
.023)	8.00	0.18	-0.31					

Baseline Network

Of This Work Context

First Contribution Multimodality For Improved Photometric Redshifts

Can we improve the network architecture to further improve the redshift estimation quality ?

Suboptimal Input Processing?

Correlation between the bands is indicative of the galaxy SED

Contribution

First

Suboptimal Input Processing?

Convolution Operation

Suboptimal Input Processing?

Proposed Solution : Parallel processing of small sets of bands (Multimodality)

- How many bands in each modality ? => Modality Size
- How to group bands into a modality ? => Modality Order

Conv 5x5x(32xM

Conv 5x5x(32xM

Contribution

First

Different order and size modalities composition

	2 bands	3 bands	4 bands
1st order	u_g, g_r, r_i, i_z, z_y, y_j, j_h, h_k	u_g_r, g_r_i, r_i_z, i z_y, z_y_j, y_j_h, j_h_k	u_g_r_i, g_r_i_z, r_i z_y, i_z_y_j, z_y_j_h, y_j_h_k
2nd order	u_r, g_i, r_z, i_y, z_j, y_h, j_k	u_r_z, g_i_y, r_z_j, i y_h, z_j_k	u_r_z_j, g_i_y_h, r_z j_k
3rd order	u_i, g_z, r_y, i_j, z_h, y_k	u_i_j, g_z_h, r_y_k	

Ex : 2 band first and second order modalities

Conv 5x5x(32xMs) Conv 5x5x(32xMs)

• Where in the network should the processed modalities be fused ? => Fusion Stage

Common Block

Fusion Stage

Conv 5x5x(32xM

Conv 5x5x(32xM

Contribution First

Generic Architecture Fusion Stage

Depth of Parallel Block ?

- Early Fusion : 25 % Parallel, 75 % Common
- Middle Fusion : 50 % Parallel, 50 % Common
- Late Fusion : 75 % Parallel, 25 % Common

Common Block

Conv 5x5x(32xM

Conv 5x5x(32xM

High Redshift Spectroscopic Sample : HSC - CLAUDS

Using 2 band first and second order modalities, **Early Fusion yields best results**.

Using first order modalities and early fusion, **modalities of size two and more** produce optimal results

Using 2 band modalities and early fusion, we see that **First Order modalities are the most important**

Most optimal and simplest configuration

- Early Fusion
- 2 band modalities
- First order modalities

Improved metrics under various conditions

M_M	

Experiences	σ	η	$<\Delta z >$	Count					
	10 ⁻³	%	10 ⁻³	10^{3}					
SDSS									
Baseline	07.99	0.18	0.34	516.5					
Multimodal	07.85	0.16	0.31	516.5					
G(M)	1.74%	10.88%	6.28%	-					
<i>P</i> value	0.0	0.0	0.0	-					
CFHTLS									
Baseline	16.01	0.85	0.22	108.5					
Multimodal	15.35	0.79	0.29	108.5					
G(M)	4.13%	7.22%	-24.05%	-					
<i>p</i> value	0.0	0.0002	0.15	-					
HSC-6b									
Baseline	09.14	1.25	1.97	46.8					
Multimodal	08.87	1.20	1.63	46.8					
G(M)	2.96%	3.94%	17.33%	-					
<i>P</i> value	0.0	0.0575	0.04	-					
	HSC-9b								
Baseline	08.41	1.24	1.58	33.1					
Multimodal	07.60	1.19	1.64	33.1					
G(M)	10.1%	3.67%	-3.1%	-					
<i>p</i> value	0.0	0.11	0.40	-					
HS	HSC-9b with 3DHST redshifts								
Baseline	14.44	2.46	13.28	2.2					
Multimodal	13.88	2.37	10.6	2.2					
G(M)	3.93%	3.71%	20.19%	-					
p_{value}	0.069	0.27	0.10	-					
HSC-9b with PRIMUS redshifts									
Baseline	12.34	2.66	11.84	15					
Multimodal	11.38	1.85	09.23	15					
G(M)	7.74%	30.4%	22.01%	-					
<i>P</i> value	0.0	0.0	0.0	-					
HSC-9b with COSMOS2020 photometric redshifts									
Baseline	12.01	1.01	8.74	43.7					
Multimodal	11.46	0.83	6.82	43.7					
G(M)	4.57%	17.08%	21.97%	-					
p_{value}	0.0	0.0	0.0001	-					

Relative gain based on available photometric bands

Performance using different network depths

Multimodality Dropout

Multimodality Dropout

Contribution Published : Ait-Ouahmed et al. 2023. A&A

 Introduction of simple yet efficient method to optimize CNN redshift estimations
Multimodality improves redshift estimation precision independently of the dataset and the CNN depth
Multimodality achieves new state of the art redshift precision on the SDSS MGS.
Multimodality dropout allows to isolate the effect of bands correlation and study it.

Second Contribution Application To The HSC Deep Survey

What challanges for a realstic application tackling the needs of current and futur deep surveys ?

Previous application was not realistic

COSMOS2020 For faint sources

- 30 band photometric redshifts from *Weaver et al. (2022)*
- 4 different photometric redshifts were estimated based on different SED Fitting methods
- The mean and standard deviation of these 4 redshifts are computed, we retain the ones satisfying : $\sigma(z) \le 0.1(1 + \overline{z})$

Merging and smoothing

- Using Self Orgnizing Maps, spectroscopic sources are merged with cosmos2020 optimizing representativity and label quality
- Smoothing using the Kernel density estimation technique

Merging and smoothing

- Using Self Orgnizing Maps, spectroscopic sources are merged with cosmos2020 optimizing representativity and label quality
- Smoothing using the Kernel density estimation technique

Result

Realistic representative dataset with best redshift labels available

Initial Results

Good Overall Cross Validated Performance

Initial Results

Cross Validation Results

N(z) Retrieval Performance

Initial Results

Inference on unlabeled set Results

Contribution Second

N(z) Retrieval Performance

Different image acquisition conditions

Different image acquisition conditions

Second Contribution

Train on one field and infer on others (COSMOS Ultra Deep)

XMM Ultra Deep

Train on one field and infer on others (COSMOS Ultra Deep)

Proposed Solution

Origins : Generative Adversarial Networks (GANs) Goodfellow et al. (2014)

Adversarial Domain Adaptation

Proposed Solution

Adversarial Domain Adaptation, **The Architecture**

Conv ix5x(32xMs

Conv 3x3x(42xMs

Proposed Solution

Potential issue : Negative Domain Transfer

Two Steps Fix :

1 - Guided Batch Selection

Source Domain

Target Domain

For each source image, a corresponding target image is selected based on photometric magnitude

Conv 5x5x(32xMs)

Conv x5x(32xM:

Conv 3x3x(42xMs

Two Steps Fix :

- **1 Guided Batch Selection**
- 2 Pairing The Selections

Discriminator Input

Source Domain Target Domain

The selection are paired at the input of the discriminator, which has to estimate if a pair comes from the sam field or not

Conv 5x5x(32xMs)

Conv x5x(32xM:

Conv 3x3x(42xMs

Negative Transfer Solution

Training on COSMOS Ultra DEEP, Infering on XMM DEEP

Contribution Second

XMM DEEP as a study case

XMM DEEP as a study case

Training On COSMOS Ultra Deep With No DA

Training On COSMOS Ultra Deep With DA

Good N(z) Retrieval Performance With DA

Contribution Second

XMM DEEP as a study case

Independent Performance Test [OII] Emission line galaxies selected from narrowband observations at redshiftz=1.47

	σ 10 ⁻³	η %	<∆z> 10 ⁻³	Count
D Fit	86.5	16.78	48.31	1853
ADV	80.71	20.56	-94.36	1853
DV	33.85	11.28	-8.46	1853

COSMOS DEEP FIELD

ELAIS FIELD

Contribution In Writing For Publication

Charecterization of the Domain Mismatch Problem ullet**For CNNs In Deep Surveys** Adapted Solution using Adversarial Domain Adaptation For Training on A Calibration Field And Genralizing to other fields

