A Simulator-based Autoencoder approach for Focal-Plane Wavefront Sensing:

principle, vortex phase diversity, perspectives for on-sky test

Maxime Quesnel^{a,b}

Gilles Orban de Xivry^b, Olivier Absil^b, Gilles Louppe^a, Jyotirmay Paul^b

^aMontefiore Institute of Electrical Engineering and Computer Science

^bSpace sciences, Technologies and Astrophysics Research (STAR) Institute

University of Liège

GRD seminar at Laboratoire d'Astrophysique de Marseille

24 November 2022

Context	Vortex phase diversity	Simulator-based autoencoder	Extending the method	Application to real data	Conclusions
●000	00000	000	00	000	O

Exoplanet imaging

- Limitations:
 - \star small angular separations
 - * high contrasts
- Instrumental solutions:
 - \star adaptive optics
 - \star coronagraphy
- Quasi-static speckles remain.

Martinez et al. 2013

Credit: GMT

Credit: ESO

maxime.quesnel@uliege.be

Context	Vortex phase diversity	Simulator-based autoencoder	Extending the method	Application to real data	Conclusions
0●00	00000	000	OO	000	O

Non-common path aberrations

maxime.quesnel@uliege.be

University of Liège

Context	Vortex phase diversity	Simulator-based autoencoder	Extending the method	Application to real data	Conclusions
00●0	00000	000	OO	000	O

Focal-plane wavefront sensing

Context	Vortex phase diversity	Simulator-based autoencoder	Extending the method	Application to real data	Conclusions
000●	00000	000	OO	000	O

Limitation: phase sign ambiguity

$$\Theta_{pupil} = \sum_{i=0}^{N} c_i Z_i$$

• Problem: sign ambiguity for even modes.

$$\mathscr{F}\{E_{pupil}(x)\} = \mathscr{F}\{E_{pupil}^*(-x)\}$$

Solution: phase diversity.

in-focus PSF

maxime.quesnel@uliege.be

out-of-focus PSF

 \rightarrow Decomposition of Θ_{pupil} into Zernike modes

Context 0000	Vortex phase diversity ●0000	Simulator-based autoencoder 000

Extending the method 00 Application to real dat: 000 Conclusions O

Vortex coronagraphs

Huby et al. 2015

- Vector Vortex coronagraph (VVC): (Mawet et al. 2005)
- Conjugated phase ramps $e^{i\pm\ell_p heta}$.
- Split circular polarization states and use two in-focus PSFs.

Delacroix et al. 2013

NASA/JPL-Caltech/Palomar Observatory

- Scalar Vortex coronagraph (SVC): (Ruane et al. 2019)
- Same phase ramp *e<sup>iℓ_pθ* for both circular polarization states.
 </sup>
- Use one in-focus PSF.

0000	00000	000	itoelicodel	00	000	O
Vorte×	phase diversit	.y				
	0	Φ		$\Phi'_{even} = -6$	Concept introd Riaud et al. Φ_{even}	uced by 2012
	in-focus out-of-for $\pm \ell_p$	$\underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	n-focus	$\underbrace{ \begin{array}{c} \text{out-of-focus} \\ \hline \hline \hline \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	Vector VC classical phase diver	rsity
	$+\ell_p$		in-focus	in-focus −ℓ _p	Vector VC polarization separation Or Scalar VC	on

maxime.quesnel@uliege.be

Deep Convolutional Neural Networks

 \rightarrow Motivation: fast predictions, higher performance, better robustness.

U-Net (Ronneberger et al. 2015):

EfficientNet (Tan et al. 2019):

maxime.quesnel@uliege.be

Context	Vortex phase diversity	Simulator-based autoencoder	Extending the method	Application to real data	Conclu:
0000	00000	000	OO	000	O

Zernike modes reconstruction

Context	Vortex phase diversity	Simulator-based autoencoder	Extending the method	Application to real data
0000	0000●	000	OO	000

Phase retrieval performance

Context	Vortex phase diversity	Simulator-based autoencoder	Extending the method	Application to real data	Conclusions
0000	00000	●00	OO	000	O

Simulator-based Autoencoder (SimAE)

CNN loss function (supervised):

$$\mathcal{L}_{CNN}(z,\widehat{z}(x;\phi)) = \sqrt{\frac{1}{N}\sum_{i}^{N}(z_{i}-\widehat{z}_{i}(x;\phi))^{2})}$$

maxime.quesnel@uliege.be

	Context 0000	Vortex phase diversity 00000	Simulator-based autoencoder ●00	Extending the method OO	Application to real
--	-----------------	---------------------------------	------------------------------------	----------------------------	---------------------

Simulator-based Autoencoder (SimAE)

CNN loss function (supervised):

$$\mathcal{L}_{CNN}(z,\widehat{z}(x;\phi)) = \sqrt{\frac{1}{N}\sum_{i}^{N}(z_{i}-\widehat{z}_{i}(x;\phi))^{2})}$$

maxime.quesnel@uliege.be

Vortex phase diversity	Simu
	00

nulator-based autoencoder DO Extending the method 00 Application to real dat 000 Conclusions O

Simulator-based Autoencoder (SimAE)

CNN loss function (supervised):

$$\mathcal{L}_{CNN}(z, \widehat{z}(x; \phi)) = \sqrt{\frac{1}{N} \sum_{i}^{N} (z_i - \widehat{z}_i(x; \phi))^2})$$

SimAE loss function (unsupervised) \rightarrow Poisson distributions:

$$\mathcal{L}_{\textit{SimAE}}(x;\phi) = -\mathbb{E}_{x \sim \rho(x)} \left[\log \left(\frac{\lambda(x;\phi)^x}{x!} \exp(-\lambda(x;\phi)) \right) \right]$$

maxime.quesnel@uliege.be

	Vortex phase diversity	Sir
000		•

mulator-based autoencoder 00 Extending the method OO Application to real dat 000 Conclusions O

Simulator-based Autoencoder (SimAE)

Context	Vortex phase diversity	Simulator-based autoencoder	Extending the method	Application to real data	Conclusions
0000	00000	O●O	00	000	O

SimAE: Performance

- WFE \in [0, 350] nm rms
- SNR $\simeq 100$
- 10^5 training & 10^2 test samples

Evaluated on specific WFE distributions:

Entire WFE distribution:

maxime.quesnel@uliege.be

Context	Vortex phase diversity	Simulator-based autoencoder	Extending the method	Application to real data	Conclusions
0000	00000	○○●	00	000	O
<u>-</u>					

SimAE: fit on-the-fly

- Pre-trained on 10⁵ samples
- Fine-tuned on 1 test sample
- Convergence time: \sim 10 seconds

maxime.quesnel@uliege.be

Context	Vortex phase diversity	Simulator-based autoencoder	Extending the method	Application to real data	Conclusions
0000	00000	000	●O		O
Improving the simulator					

- Learnable instrumental parameters: for now Vortex rejection factor
- Including AO telemetry into the simulator:

• Use optical propagation package: HEEPS (PyTorch) or δ Lux (Jax)

14

Context	Vortex phase diversity	Simulator-based autoencoder	Extending the method	Application to real data	Conclusions
0000	00000	000	○●	000	O
Variati	onal inference				

• Add Posterior q(z|x) and Prior distributions p(z):

- KL divergence loss term: $-\beta KL(q(z|x;\phi)||p(z)) \rightarrow \text{training now stable}$
- Evaluation metric: $\mathbb{E}_{p(x)}[\log q(z|x)]$
- How do we pick the best z?

Credits: Jyotirmay Paul

maxime.quesnel@uliege.be

Context	Vortex phase diversity

Simulator-based autoencode 000 Extending the metho 00 Application to real data $\bigcirc \bigcirc \bigcirc$

Conclusions O

Subaru/SCExAO instrument

Credits: Subaru/SCExAO and Jyotirmay Paul

Context	Vortex phase diversity	Simulator-based autoencoder	Extending the method	Application to real data	Conclusions
0000	00000	000	OO		O

Transfer learning with SCExAO data

Context	Vortex phase diversity	Simulator-based autoencoder	Extending the method	Application to real data	Conclusions
0000	00000	000	00	000	•
- ·					

Conclusions

