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Capturing high-resolution imagery of the Earth’s surface often calls for a telescope of considerable size, even from
low Earth orbits (LEOs). A large aperture often requires large and expensive platforms. For instance, achieving
a resolution of 1 m at visible wavelengths from LEO typically requires an aperture diameter of at least 30 cm.
Additionally, ensuring high revisit times often prompts the use of multiple satellites. In light of these challenges, a
small, segmented, deployable CubeSat telescope was recently proposed creating the additional need of phasing the
telescope’s mirrors. Phasing methods on compact platforms are constrained by the limited volume and power avail-
able, excluding solutions that rely on dedicated hardware or demand substantial computational resources. Neural
networks (NNs) are known for their computationally efficient inference and reduced onboard requirements.
Therefore, we developed a NN-based method to measure co-phasing errors inherent to a deployable telescope. The
proposed technique demonstrates its ability to detect phasing errors at the targeted performance level [typically
a wavefront error (WFE) below 15 nm RMS for a visible imager operating at the diffraction limit] using a point
source. The robustness of the NN method is verified in presence of high-order aberrations or noise and the results
are compared against existing state-of-the-art techniques. The developed NN model ensures its feasibility and
provides a realistic pathway towards achieving diffraction-limited images. ©2024Optica PublishingGroup

https://doi.org/10.1364/JOSAA.506182

1. CONTEXT AND MAIN CHALLENGES

The angular resolution of telescopes is fundamentally limited by
the size of their aperture for a given wavelength. For example, a
telescope with a diameter of 30 cm has a ground sampling of 1 m
at a distance of 400 km or 2 m at 800 km at visible wavelengths
(λ= 800 nm). In the fields of Earth observation and astronomy,
high-angular-resolution images are crucial for maximizing the
scientific output and return on investment, which has driven
the demand for larger apertures. However, launching large
monolithic pupils into space is expensive, and designing and
manufacturing such telescopes pose significant challenges [1].
An effective solution to increase aperture size is to fragment the
aperture into smaller segments. By folding the telescope inside a
compact volume during launch and deploying it in orbit, both
the collecting power and angular resolution can be increased.
This volume optimization and gain in mass translate directly
into cost savings, enabling the deployment of a constellation
with multiple high-angular-resolution platforms and therefore
achieving higher revisit rates (i.e., temporal resolution).

Improving both the revisit rate and angular resolution finds
applications in Earth climate monitoring, defense, and security
for which the highest commercially available spatial resolu-
tions today are given by the satellite Pleiades [with a ground
sampling distance (GSD) of 70 cm, at a rate of one image per
day] as well as Pleiades-Neo (30 cm GSD color images). For
example, flood monitoring (accounting for over 40% of the
natural disasters) currently provides information either over
large areas or with limited spatial resolutions and a revisit every
two days (e.g., Copernicus with a 5 km resolution), or instead
with a revisit time at best of a few days yet with a high spatial res-
olution (e.g., Pléiades, Sentinel-1, and Sentinel-2). Solar system
exploration can potentially also benefit from this improvement:
although the HRI camera of Deep Impact has an aperture larger
than 30 cm, the typical size is 10 to 20 cm (NAC camera on
Rosetta, Cassis camera on TGO, New Horizon camera).

The objective of this study is to enable, in ESA’s own par-
lance very very high-angular-resolution imaging in the visible
spectrum for Earth observation from space at a low cost by
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quantifying the performance of a NN-based phasing algo-
rithm during pre-launch, deployment, and exploitation
phases. To achieve this, we use AZIMOV [2] as a reference
design for our study. AZIMOV is a satellite concept featur-
ing a 30 cm wide, diluted aperture telescope onboard a 6U
CubeSat. It is capable of reaching a 1 m GSD in the visible
(i.e., GSD= λ/D ∗ z= 800.10−9/0.3× 400000≈ 1 m)
from LEO with a swath of over 4 km. Figure 1 illustrates a
simplified concept of the payload. This technology allows the
telescope’s aperture to surpass the size of the supporting plat-
form, thereby enhancing the telescope’s light-gathering power
and improving its achievable resolution.

To achieve the theoretical angular resolution for a given
segmented pupil, the individual mirror segments must be co-
phased with a precision typically on the order of a fraction of
the imaging wavelength (usually λ/14 [3]). Compensation
for static and dynamic phase aberrations is required for each
segment. High-precision actuators are utilized to control the
position of the deployable primary mirror segments in piston
and tip-tilt [4] (PTT). For visible wavelength imaging at the
metric resolution limit (we selectλ= 800 nm as the study wave-
length), the wavefront error (WFE) after correction should be
less than 50 nm RMS. However, due to actuator response and
dynamics, a portion of the WFE error is independent of sensing.
From a dedicated study of this error budget, Sauvage et al. [5]
allocate εWFS < 15 nm RMS to the sensing and reconstruction
contribution. Our study proposes a solution to perform accu-
rate WFS onboard a CubeSat, using directly a single focal plane
image and deep learning.

This paper is organized as follows: we first provide an intro-
duction to the study and the motivation behind it. Second we
delve into the concepts of image formation in the context of
wavefront sensing. The methodology employed in our research
is detailed in Section 4. Then, Section 5 presents the results
obtained from our experiments, analyzing the performance

Fig. 1. Simplified illustration of the deployable payload concept:
deployable structures (primary and secondary mirrors, baffle), actu-
ators to adjust mirror positions, sensors to measure mirror positions,
detector to assess image quality, and onboard artificial intelligence to
control and adjust mirror positions to reach diffraction-limited image
quality (i.e., active optics). From Schwartz [2].

and robustness of the proposed methods. Section 6 discusses
the implementation of neural networks in a complete phasing
process specifically tailored for the AZIMOV system. Finally,
Section 7 concludes the paper.

2. PHASING SEGMENTED MIRROR
TELESCOPES

The phasing of segmented mirror telescopes is a critical aspect
of their operation, as it directly impacts the quality of their
optical performance. Ground-based telescopes such as the
segmented, twin Keck telescopes correct for tip-tilt errors using
a Shack-Hartmann wavefront sensor (SH-WFS) [6]. However,
the SH-WFS is known to be insensitive to global piston error.
To overcome this issue, a micro-lenslet array is placed at the
junction of two segments on the primary mirror, and allows
to identify the deferential piston between two segments [6].
More recently, for the Giant Magellan Telescope, and follow-
ing roughly the same principle, a differential piston between
segments will be identified using a holographic dispersed fringe
sensor (HDFS) [7]. It employs a holographic optical element
to disperse the incoming light into multiple wavelength chan-
nels. By analyzing the interference patterns created by these
channels, the HDFS can accurately measure the differential
piston. For space-borne telescopes such as the JWST [8], the
phasing strategy is divided into three parts: i) segment location-
identification, to identify the coarse position of each segment;
ii) co-phasing to correct the global phasing error of the 18 seg-
ments; iii) finally, wavefront monitoring and maintenance to
ensure a correct phasing throughout the life of the mission. The
coarse and fine phasing is ensured by a dispersed fringe SH-WFS
and weak lens hardware [9]. In this context, this step-by-step
approach has inspired our work. However, we propose an inno-
vative approach to co-phase segmented telescopes by using a
single focal plane image as the observable, and deep learning to
tune our NN-based algorithm. Single-image approaches can
greatly simplify the phasing process and enhance the optical
performance of future segmented telescopes. Our work focuses
specifically on the primary mirror phasing from the point spread
functions (PSFs) obtained while imaging a point source object.
The use of a point source is a key element in our approach: first
to understand the behavior and NN specifics to process focal
plane images and estimate wavefront errors from them, and
second, to be able to generalize to extended objects. Lastly, the
phasing process of AZIMOV is not defined yet. One strategy
could be to undertake the coarse phasing imaging of a distant
unresolved star and then rotate the telescope towards the Earth
to proceed with the fine phasing and capture images for further
ends. The use of NN on point sources is therefore central to
many applications. Our work aims to employ a computation-
ally efficient phasing method taking into account the typical
CubeSat limitations especially in terms of volume and comput-
ing power. In particular, we demonstrate the potential of using
NN in contrast to more classical optimization methods, focus-
ing on execution time as a proxy to computational complexity.
In this context, we use the time required for NN inference to
identify a suitable NN model capable of reaching the diffraction
limit with minimal computational burden. The AZIMOV
payload is currently being designed, and requirements for the
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onboard computer (OBC) are still being finalized. Among
other aspects, the OBC will need to run the compute intensive
co-phasing algorithm, the data-intensive image processing
algorithm (including algorithms such as image registration and
super-resolution), and other housekeeping tasks. The satellite
being in LEO, it will receive a varying thermal load (approx.
every 90 min): multiple updates per orbit will be required
to maintain good phasing performance. It is important to
minimize the co-phasing algorithm complexity and therefore
execution time. The exact execution time will naturally depend
on the selected OBC.

A. Classical Wavefront Sensing Approaches

Various methods have been proposed for measuring and esti-
mating wavefront error, broadly classified into two categories:
direct wavefront sensing and focal plane methods. Direct wave-
front sensing relies on a relatively simple algorithm, at a cost of
an optical path specific to the wavefront sensing with dedicated
hardware, such as the JWST’s dispersed fringe Shack-Hartmann
WFS [8].

An alternative method involves indirect measurement, where
the wavefront is deduced from the focal plane image captured by
the detector. One approach is image sharpening, as proposed in
the work of Schwartz [2,10], which entails acquiring a sequence
of images and iterating starting from an initial guess of the
aberrations. For each of these images, an image quality metric,
such as maximum intensity or image contrast, is computed and
then used in a non-linear iterative optimization algorithm to
estimate the aberration. In contrast, model-based focal plane
wavefront sensing methods typically rely on introducing diver-
sity (whether in phase, e.g., phase diversity [11], wavelength, or
amplitude) to resolve sign-ambiguity [12] of even modes. A best
fit is sought to the focal plane images where from the wavefront
aberration parameters are estimated. The algorithms are typi-
cally more complex than those used in direct wavefront sensing
due to the relationship between the image intensity in the focal
plane and the electric field in the pupil plane. Nevertheless,
considering the constraints posed by Earth observation and
the non-repeatability of scenes, the goal is to conduct focal
plane wavefront sensing using only a single image. Data-driven,
deep-learning-based methods can also be applied successfully
in focal plane wavefront sensing (FPWFS). One of the main
advantages lies in the fact that once the network is trained, the
model directly outputs the estimated wavefront without requir-
ing iterations. The computation gains time and, consequently,
efficiency in calculations. The network’s parameters have been
learned during the training phase, where all the computational
burden is handled before launch. Therefore, once onboard, the
process is relatively fast and not contingent on the uncertainty of
the number of iterations. The training steps build numerically
and iteratively the NN model from the data. Table 1 compares
qualitatively the three methods cited above.

B. Motivation for New Phasing Approaches for
Space-Borne Segmented Telescopes

Recently, access to space has shown significant changes charac-
terized by the emergence of the “NewSpace” paradigm, which

Table 1. Feature Comparison of FPWFS Methods

Deep Learning
Method

Image
Sharpening

Phase
Diversity

Data driven Yes No No
Model-free Yes Yes No
Iterative No Very Yes
Onboard
computing

Deterministic Optical
optimization

Numerical
optimization

Off-board
computing

Stochastic None None

Initial guess No Yes Yes

emphasizes cost-effective access to space and introduces novel
constraints such as limited volume allocation. Therefore, this
necessitates the development of innovative methodologies, such
as those shown in this paper. By leveraging a single focal plane
image, we estimate and subsequently correct low-order phase
aberration piston and tip-tilt using neural networks (NNs) and
a space-borne, four-petal deployable CubeSat as the reference
design. CubeSats are not only constrained in volume but also in
computing power. Therefore, the complexity of the model will
be considered in this study, as it plays a crucial role in minimiz-
ing optical aberration control for successful implementation on
small satellites.

C. Previous Work on NN for Focal Plane Wavefront
Sensing

The utilization of deep learning techniques has been proposed in
previous studies as a powerful tool for FPWFS, often aiming for
performance levels similar to or beyond the state of the art [13–
15]. The majority of NN methods for FPWFS employ a single
defocused image, as demonstrated in studies such as [13,15–
19]. Others have used an optical preconditioner (overexposure,
defocus, scatter) to improve the performance of the WFS [20].
Finally, others have used a pair of in- and out-of-focus images
to identify Zernike coefficients from a pair of PSFs. [21]. These
works have shown excellent performance for wavefront sensing
using deep NN architectures, with Xception and Inception
v3 being the most widely used. Xception utilizes a depthwise
separable convolution approach, which separates spatial and
channel-wise convolution operations. These architectures
have been, for example, employed by Paine [15], Rajaoberison
[17], Andersen [18], Nishizaki [20], and Orban [19]. Other
popular architectures such as Resnet 50 and VGG-16, have also
been tested by Paine [15] and Orban [19]. Architectures like
EfficientNet-B4 (used by Quesnel [21]), Bi-GRU for sequen-
tial data (employed by Wang [16]), and Dense NN (used by
Rossi [13]) also have demonstrated effectiveness for focal plane
wavefront sensing. In these studies, two types of focal plane
wavefront sensing have been identified. The majority of them
focus on Zernike mode identification for a monolithic pupil
imager (Paine [15], Andersen [18], Nishizaki [20], Orban [19],
and Quesnel [21]), while others aim at phasing a segmented
pupil by identifying low-order modes (Wang [16] focuses on
piston and tip-tilt; Rossi [13] and Rajaoberison [17] focus on
piston only). The major shortcoming of these studies is that the
NN architecture requires hundreds of thousands to hundreds
of millions of parameters (e.g., Resnet 50 and VGG-16 require,
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respectively, 23 million and 138 million parameters). Our
goal, apart from dealing with specific segmentation errors, is to
minimize the number of parameters in order to optimize the
inference time. For this reason we need to explore new suitable
architectures will smaller dimensionalities while keeping a
bottleneck architecture such as VGG-net and Resnet.

3. FORWARD MODEL

A. Image Formation

The image of a point source, or PSF, can be described as

PSF= |FT(P e jφ)|2 =
∣∣FT

(
P e j (φPTT+φHO)

)∣∣2, (1)

where FT is the Fourier transform, and P is the pupil transmis-
sion function, with one inside the pupil boundaries and zero
outside. φ is the phase function, which can be decomposed
as φ = φPTT + φHO corresponding, respectively, to the PTT
phase and the higher-order (HO) phase. Also, φ = 2π1

λ
, where

1 is the corresponding optical path difference (OPD) and the
wavelengthλ= 800 nm.

The AZIMOV prototype (Fig. 1) is composed of a pupil with
four deployable petals. The precise design of the AZIMOV
pupil is not finalized today. The global shape is four segments
with an approximately square shape, but the final design might
evolve due to the reduced volume constraints. In particular the
four segments might not be symmetric in the final design. In this
paper, we propose a simplified pupil composed of four squared
segments where two segments are 10% cropped on the edge in
order to break the pupil centro-symmetry as shown in Fig. 2.
The asymmetric pupil Fourier wavefront sensor (APF-WFS) in
Martinache’s work shows great potential for small aberrations
on an asymmetric pupil. Pope [22] shows an interest in using
Martimache’s work for segmented pupil, retrieving a piston
value for an interval of λ

3.5 . However, it has not been studied
for large tip-tilt errors, a subject discussed in this paper. This
method appears to be faster than our approach (only requiring
a FFT) but lacks the ability to estimate large aberrations and
only works on a point source—essential considerations for
AZIMOV. In our case, cropping 10% of the segments is chosen
as a trade-off between the loss of the collecting area and the
correct wavefront estimation: the more asymmetric the pupil
is, the better the even parts of the phase will be identified [12].
However, a limit is shown in the ratio of even part identification
over the percentage of the cropped area. For instance, doubling
the cropped area (from 10% to 20% of two segments) improves
the estimation by 25%. For our space-borne application, the
pupil design and the need to use the images from the science
detector directly compel us to use instead an amplitude diversity
as shown in Fig. 2.

To address the specifics of a segmented pupil, we define
our modal basis with three modes Bk=1...4

i=1...3 on each of the four
segments, i.e.,

φ =

3∑
i=1

4∑
k=1

c k
i Bk

i , (2)

where the modes are

Fig. 2. Example of the pupil and OPD map.

Bk
1 (x , y ) = 4,

Bk
2 (x , y ) = 4

√
3x ,

Bk
3 (x , y ) = 4

√
3y ,

(3)

representing, respectively, piston, tip, and tilt on segment k.
Clearly these modes are orthogonal across different segments
and their inner product:

〈Bi , B j 〉 =

{
1 if i = j
0 otherwise

. (4)

The expansion coefficients in Eq. (3) are easily found when
establishing an orthonormalized basis with unitary root-
mean-square (RMS) over the whole, un-cropped, pupil in
Fig. 2:

1

4

√
1

4

∫ 1

−1

∫ 1

−1
Mi M j dxdy = 1 if i = j , (5)

where the 1/4 in front of the square root represents one-fourth
of the pupil, i.e., the relative area of one segment, and the inte-
gral is computed on normalized units; and Mi represents the
phase mode of one squared pupil. For instance M1 corresponds
to a piston on a squared segment, when the three others are set to
zero. Equation (5) allows to identify normalization coefficients
in Eq. (3).

Here we allow ourselves a slight lack of mathematical rigor
in that the integration bounds, on account of the removed
portion shown in Fig. 2, would not be exactly 1 and −1. Since
the amount of amplitude diversity needed to lift the even mode
sign ambiguity is an open optimization parameter, we gloss over
this detail and assume the same normalization for each and all
segments.

The WFE definition for segmented pupils differs from the
definition over monolithic pupils as shown in Eq. (6):

WFE({c k
i })=

4∑
k=1

√√√√ N∑
i=1

c k
i

2
. (6)

This WFE is described by a quadratic sum of the phase
coefficients over each segment. Provided the segments are
non-overlapping, the total RMS is the sum of individual RMS
values and not their quadratic sum.

An example of the PSFs studied is shown Fig. 3. These PSFs,
paired with their Zernike coefficients, are directly used for the
NN training.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Fig. 3. Illustration of AZIMOV PSFs obtained in different con-
figurations of WFE and signal to noise ratio (SNR). First row is PSF
disturbed by PTT aberrations only. (a) PSF diffraction limit, (b) PSF
WFEPTT = 97 nm, (c) PSF WFEPTT = 454 nm. Second row is PSF
disturbed both by PTT and HO aberrations. (d) PSF diffraction limit
+ 30nm HO, (e) PSF WFEPTT = 96 nm WFEHO = 30 nm, (f ) PSF
WFEPTT = 97 nm WFEHO = 60 nm. Last row is the noise influence
depending on the SNR. (g) PSF diffraction limit, SNR= 10, (h) PSF
diffraction limit, SNR= 30, (i) PSF diffraction limit, SNR= 100.

B. Data Generation

The training of NNs necessitates a substantial volume of data to
effectively learn from diverse realizations. Unfortunately such
an amount of real data is not available yet; therefore, data are
simulated. All the generated imagery data are Nyquist sampled
with a field of view (FoV) of 64 ∗ 64 pixels at λ= 800 nm. We
selected this field of view (FoV) based on the anticipated ampli-
tude of the wavefront error (WFE) to be measured. The PSF’s
global intensity is normalized to one. Figure 4 presents the two
studied distributions, one for large WFE errors corresponding
to the initial mirror segments at the deployment (i.e., coarse
phasing), and the other for smaller WFE errors for the final
fine phasing step. The distribution of the 12 piston-tip-tilt
coefficients follows a Gaussian distribution centered on 0 nm
with σfine = 10 nm or σcoarse = 70 nm. However, identification
of pistons, under a single-image FPWFS setting, is constrained
to a range between − λ

4 and λ
4 or their estimate can suffer from

the so-called lambda ambiguity. We constrained piston values
on a λ

2 width interval so that no piston can be identified at+ λ
2

while another would be identified as− λ
2 since it will lead to the

same PSF. Therefore, for the coarse phasing, the piston values
are randomly drawn following the same distribution as for the
fine phasing (σ piston

coarse = σ
piston
fine ) so that the same NN model

studied in the following section can be used also in Section 6.

Fig. 4. Probability density of WFE over the full pupil for the train-
ing set calculated over 106 samples using Eq. (6). The figure on the left
corresponds to the fine phasing. On the right, the distribution of the
coarse phasing, studied in Section 6.

The capture range of the depicted distribution enables a range
of minimum and maximum values within approximately [−50,
50] nm RMS, corresponding to [−200, 200] nm peak to valley
(PV) for the piston and [−350, 350] nm PV for tip-tilt. This
amplitude is reached after an initial phasing step using the
ELASTIC method [23], or our embedded onboard capacitive
displacement sensors [2].

The determination of an optimal dataset size, depending
on the complexity of the problem and the complexity of the
learning algorithm (e.g., nonlinear relationships between input
and output features), is controversial as there is currently no
definitive methodology for its precise determination. We gener-
ated a dataset comprising 105 samples randomly split: 90% of
the samples are allocated to the training set, while the remaining
10% are assigned to the validation. An additional 104 samples
are generated exclusively for the testset so that the NN model
can be tested with unseen data. All the datasets follow the same
coefficient distribution.

C. Disturbance Sources

1. Noise

In a low-flux regime, the image mostly suffers from readout
noise, estimated at 2.1 electrons (e.g., using a Sony Pregius-S
IMX530 CMOS detector with 5320× 4600 pixels) whereas
photon noise dominates in high-flux cases. These are the two
noises considered in the study, while other sources of noise
(background, gain, drift) have been chosen to be ignored.
Therefore, we define the signal to noise ratio (SNR) as

SNR=
f√

f + σ 2
ron

, (7)

where f is the star flux in numbers of photons and σron = 2.1e−

the readout noise. The photon noise is described by a Poisson
distribution P( f ) for each pixel. The readout noise is a
Gaussian noise drawn at µ= 0, σ = σron added to the pixel
value. The corresponding noisy images can be found in Fig. 3.

2. Higher-Order Aberrations

Higher-order aberrations introduce additional distortions to the
wavefront on top of the PTT. However, their impact is different
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from the PTT: although they degrade the PSF and therefore the
delivered resolution, they cannot be compensated for. We carry
out an analysis of their impact in the system: how they degrade
the PTT estimation, and if it is needed to include them in the
training set for PTT. These aberrations are added in addition to
the PTT in the wavefront. They follow a 1/ f 2 power spectrum,
typically encountered with good quality optics [24] and are
orthogonal to PTT aberrations. The magnitude of HO aber-
rations is approximately 30 nm RMS over the full pupil, or in
other words

∑
1/ f 2

= 30 nm RMS, consistent with current
estimates for AZIMOV.

4. METHODS

A. Deep Learning

Deep learning is a type of machine learning method able to
extract representations or model directly from data with a com-
plex architecture of learning successive layers with a high level
of abstraction (increasingly meaningful representations). These
architectures leverage a combination of diverse non-linear trans-
formations to accomplish their objectives. The NN architecture
has a lot of influence on the output accuracy and is composed of
different layers, of which the two primary types are noted below.

• Fully connected layers [25]: layers composed of neurons.
A neuron computes a weighted sum of its input, plus a bias
and then applies a non-linear activation function. The model
parameters are therefore the neurons’ weights and biases.

• The convolutional layer [25], particularly adapted for
image processing, computes the convolution of an image with
one or several kernels. In this case, the neural network optimizes
all the convolution kernels and biases.

The model architecture is created by adding layers one to
another. Choosing the right architecture depends on the more
important criterion of the project: it can be either the accuracy
of the estimation, the model size, or the inference speed. In our
work we aim to find the right balance between performance (the
precision of WFE estimation) and model size (the size of the NN
algorithm that needs to be embedded onboard the CubeSat).
The number of model parameters depends on the choice of
NN architecture. Decreasing it avoids overfitting and makes
the model size smaller. Since our input data consists of 2D
images, convolutional NNs have fewer parameters compared
to fully connected layers and can capture pixel neighborhood
information effectively. The simplest NN architecture to infer
coefficients from an image is the VGG-net [26] or the Resnet
[27] architecture, which are optimal in terms of number of
parameters. Historically, the Resnet architecture is known for
the “skip connection,” allowing the loss gradient to float easily
through the deepest layer of the model during backpropagation.
To achieve the best trade-off between performance and time
complexity, we consider these two highly suitable architectures:
VGG-net [26] and Resnet [27].

We therefore propose a NN baseline composed of five
convolutional layer stacks as VGG-net architecture (two con-
volutional layers followed by one max-pooling layer) and three
fully connected layers with a ReLu activation function. In
the case of the Resnet, two skip connections are added to the

Fig. 5. Adopted Resnet architecture.

architecture (each skip connection is a convolutional layer with
a 1×1 filter): the first one starts after the first layer to merge
with the output of the third layer, and the second one after
the third layer to merge after the fifth layer. The architecture
is presented in Fig. 5 and has been chosen in order to find the
smallest architecture suitable for reaching the diffraction limit
requirement. Indeed such architecture goes up to 106 number of
parameters whereas the smallest Resnet found in the literature,
the Resnet-18, reaches 107 parameters, 10 times more than our
heavier network.

N1, N2, and N3 correspond to the number of filters of the
convolutional layers. This number of filters impacts the internal
parameters and changes the size of the NN model (see Table 2);
all model parameters are stored in a double precision float64 for-
mat as it is the default format in the Pytorch library. The number
of parameters also impacts the computation time and influences
the model’s performance. Increasing the number of parameters
can improve performance until the point of overfitting occurs,
leading to limited generalization on new data.

The training step relies on a minimization algorithm of a cost
function commonly known as the loss function. Conceptually,
a loss function is a way of prioritizing which error to fix from
our training samples, so that NN parameter updates result in
adjustment to the output, decreasing the loss. The minimization
algorithm optimizes the NN parameters (weights, biases, and
filters) to minimize the loss function. Usually, the root mean
square error is used, but in our study, the WFE over the pupil is
computed as the loss function:

LossWFE =WFE
(
c k

i − ĉ k
i

)
, (8)

where c k
i is the true coefficient for mode i ∈ [1 . . . 3] and

segment k, and ĉ k
i is the estimated coefficient. This loss, as men-

tioned above, allows the model to adjust accurately the model
parameters according to the optical criterion on the pupil.

Table 2. Resnet Model Sizes Depending on the
Number of Convolutional Filters

a

Label N1 N2 N3 # Parameters Model Size [MB]

NN1 4 8 16 13.103 0.134
NN2 8 16 32 31.103 0.278
NN3 16 32 64 94.103 0.94
NN4 32 64 128 326.103 2.6
NN5 64 128 256 1.2.106 11

aThis table approximates VGG-net sizes as well, since Resnet architecture has
only slightly more internal parameters due to the skip connection that needs to
link the number of filters from the input layer to its output layer.
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B. Classical Phase Diversity and Image Sharpening

Other more classical FPWFS methods have also been proposed
for the phasing of segmented telescopes, namely, phase diversity
and image sharpening. The whole problem of phase diversity
(PD) lies in the estimation from the focal plane image and
the defocused image of the unknowns, which are the phase
and the object [28]. However, in our case, the object is not to
be estimated as it is a point source. Since our system does not
include any additional optical components and aims to main-
tain the integrity of the focal plane image without any defocus,
it is not possible to acquire a defocused image. Therefore, we
propose a single-image phase diversity that minimizes the dis-
tance between the real PSF and the fitted one by adjusting the
12 phase coefficients. A criterion based on a quadratic pixel-
to-pixel difference between the real PSF and the fitted one is
minimized iteratively using the conjugate-gradient method
[29]. A Tikhonov regularization is added to the criterion, in
order to avoid the divergence of the phase coefficient, particu-
larly at low SNR. The conjugate-gradient has shown the best
performance in time, number of iteration, and WFE among
others minimization methods.

Another method is image sharpening (IS). By taking focal
plane images, the algorithm iteratively maximizes an image
maximum intensity centered window by adjusting iteratively
the PTT. Classical metrics are the maximum intensity in the
center of the image, contrast, or the sum of the pixel squared.
Alternative optimization methods are also possible and may lead
to faster and improved estimates. Powell optimization methods
[30] have shown the best efficiency in terms of noise robustness
and computing time. To perform IS, we consider an exposure
time of 0.1 ms. This exposure time is taking into account in
the method calculus time as an image has to be acquired at each
iteration of the algorithm. The computation time of generating
the PSFs is deduced from the total computing time.

5. SAMPLE NUMERICAL RESULTS

A. Model Architecture

First, both types of model architectures (VGG-net and Resnet)
are trained using identical hyperparameters (batch size, learning
rate, epochs) and their inference performances are compared.
The performances of the Resnet architecture are observed to
systematically outperform the VGG-net even after fine-tuning
both model hyperparameters (i.e., other models are trained)
enhancing performance with respect to the architecture and
number of parameters. The optimal set of hyperparameters for
the Resnet includes a progressive scheduled learning rate (LR)
depending on the epoch e :

LR(e )=
{

10−4 if e < 70
10−6
+ (10−4

− 10−6)exp−(e−70)∗0.0125 otherwise.

Specifically, a batch size of 32 PSFs is used during 300 learning
epochs.

Figure 6 presents the performance comparison between
the two architectures mentioned above for various model
sizes. Performance is compared using the same test dataset and
optimal sets of hyper-parameters, in terms of residual WFE ,
assuming a perfect correction based on the algorithm estimates.

Fig. 6. Performance comparison of estimation between the VGG-
net architecture (yellow line) and the Resnet architecture (green line) as
a function of the model size. Dotted-line corresponds to model estima-
tion for data at SNR= 30. The dashed blue line represents the resid-
ual target to reach the diffraction limit at 15 nm RMS. VGG-net size is
rounded at the same value as Resnet for the graphic’s readability.

Both NN models are trained with noiseless data and tested with
either noiseless data or data at SNR= 30 (the noise study will
be developed in Subsection 5.B). As expected, larger models
lead to better performance, but at the cost of increased compu-
tational complexity. The best performance reaches about 1 nm
of WFE, far below the residual target at 15 nm. However, when
facing a low SNR, both NN models show weak performance
where the best performance achieved is 50 nm of WFE for
the heaviest Resnet. Improvement on noisy data is shown in
Subsection 5.B. Whatever the model size, the Resnet outper-
forms the VGG-net. Additionally, Resnet has demonstrated
faster convergence and lower loss function values compared
to VGG-net. The skip connection in the Resnet architecture
enables more effective parameter updates in the top layers and
accelerates the convergence of the loss function. Based on the
NN performance, the Resnet architecture is preferable. The
requirement of 15 nm RMS is fulfilled by nearly all Resnet
models regardless of the model size. However, in presence of
noisy data, the methodology should be improved to reach the
diffraction limit.

Subsequently, only the Resnet architecture will be examined
in the rest of the paper. It is important to note that the simulated
data used for evaluation lacks noise diversity and higher-order
aberrations. Therefore, it is crucial to assess the robustness of
the models by introducing noise and HO aberrations into the
samples.

B. Model Robustness to Noisy Data

As mentioned above, images suffer from detector and photon
noise. For the training step, the noise is added “on-the-fly”
meaning that during each epoch, the noise is added to each
noiseless PSF so that the noise realization is always different at
each epoch for each PSF. Two scenarios are identified.

• Scenario 1: each NN model is trained with a noiseless
dataset and is tested with a noisy dataset. Each single NN model
is then tested over different SNRs. Several model sizes are tested.
The aim is to evaluate the error made on noisy datasets by a
model that has been trained with a noiseless dataset.
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Fig. 7. Resnet robustness to noise: scenario 1 (dotted lines) and
scenario 2 (solid lines). For the scenario 2 curves, each point represents
one NN model, trained and tested on the corresponding SNR.

• Scenario 2: each NN model is trained with noisy samples
at a given SNR. Each NN model is then tested on noisy data at
the same SNR as for the training. Two NN model sizes are tested.
The aim is also to evaluate the error made on noisy datasets when
the NN models have been trained with noisy datasets.

We conducted a performance comparison between the two
scenarios based on residual WFE after correction. Figure 7
illustrates the residual wavefront error depending on the SNR.
The dotted lines represent NN models trained without noise,
while the solid lines represent NN models trained with noisy
PSFs (each point on the solid line corresponds to a NN model
trained for a specific SNR). The performance of the models
unsurprisingly improves as their size increases. The diffraction
limit, defined by WFE < Residual target, is not achieved by
the smallest models (dashed red line) even at high SNR. For
low SNR, where the detector noise prevails over the photon
noise, scenario 1 outputs an estimation error larger than the
initial WFE: this would lead to an increase of the WFE if used
in a closed loop. On the other hand, the scenario 2 network’s
estimation stays in the mean of the input WFE distribution:
during training, the models minimize their loss function by
setting all the phase coefficients to zero as the PSF geometry
cannot be properly identified in the noise. At high SNR, in both
scenarios, the largest model (NN5) converges towards the same
WFE value. However, the NN3 scenario 2 model exhibits a
slight limitation, achieving a WFE slightly below 10 nm RMS,
whereas the same model trained without noise performs better.

An alternative approach is to train models using a range of
SNRs drawn uniformly in the interval [30,100] to assess their
performance.

Figure 8 illustrates a comparison of wavefront estimation
quality between models trained on a fixed SNR and those
trained on varying SNRs. Remarkably, the models trained on
various SNRs show great performance, reaching the diffraction
limit more rapidly at SNR= 50 for the NN5 and SNR= 70 for
the NN3. Surprisingly, even at high SNRs, the models trained
on varying SNRs demonstrate comparable performance to
the models trained at fixed SNR. However, in a very-low-flux
regime, performance is worsening the wavefront. Globally
speaking, a SNR of at least 50 is required to reach the diffraction
limit with a relatively small NN model. This is somehow similar
to phase diversity.

Fig. 8. Resnet robustness to SNR. Dark green curve illustrates the
estimation quality of the NN5; light green shows NN3 performances.

C. Models Robustness to Higher-Order Aberrations

To validate the performance of the neural network, the model
is also trained considering the presence of higher-order aber-
rations on the primary mirror. In the same way as for the noise
robustness discussed in Subsection 5.B, we distinguish between
two scenarios.

• Scenario 3: each NN model is trained with a dataset where
higher-order aberrations are not considered, and is tested on
PSFs generated with PTT and higher-order aberrations.

• Scenario 4: each NN model is trained with samples gen-
erated from PTT and higher-order aberration phase maps.
The model is then tested over data that suffers from the same
higher-order amplitude.

For these two scenarios the 12 PTT coefficients follow the
same distribution. They are the only coefficients inferred by the
NN model since the HO aberrations cannot be compensated
for. The residual WFE refers here to the PPT part of the phase
(i.e., excluding HO aberrations).

Figure 9 shows that even in the presence of unexpected HO
aberrations, the inference step achieves a performance better
than the diffraction limit requirement. The difference between
scenario 3 and scenario 4 is only of a few nanometers, indicating
that all model sizes exhibit robustness against small changes in
the focal plane image due to HO aberrations. Surprisingly, the
most robust model is for a size of 1MB, where the difference
between scenario 3 and scenario 4 is the smallest, approximately
0.3 nm RMS. In contrast, the heaviest model begins to overfit
the data: it infers with the best accuracy the raw data but when
new data is introduced for testing, the performance slightly
degrades by a few nanometers, while still reaching the diffrac-
tion limit. The inference accuracy worsens when stronger HO
aberrations are added to the phase map, as shown by the red
curve Fig. 9, which represents the inference performance when
60 nm RMS of WFE is added on top of PTT. However, the
performance continues fulfilling the accuracy requirement and
adding 60 nm RMS on the phase map introduces only a few
nanometers of estimation errors.

D. Comparison to Classical Minimization Methods

Having explored the robustness of different model sizes in term
of estimation accuracy, we now turn our attention to comparing
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Fig. 9. Resnet performance as a function of model size for images
including higher-order aberrations. The dashed light green line corre-
sponds to scenario 3 (i.e., no HO aberrations included in the training)
for 30 nm RMS of HO. The red line corresponds to scenario 3 for
60 nm RMS of HO aberrations. Solid green line, scenario 4 results for
a NN trained with PSF aberrated with PTT and HO.

our method with phase diversity and image sharpening (IS) in
terms of computation time and performance. Phase diversity
relies on a numerical iterative minimization of a quadratic
criterion over the image pixels, involving a computing time
depending on the number of iterations of the algorithm. Each
iteration requires several Fourier transforms as the model PSF
is fitted to the measured data (see Subsection 4.B). Three toler-
ance criteria are chosen: one fast but less accurate εPD

1 = 10−4,
one finer but slower εPD

2 = 10−7, and a very slow and precise
εPD

3 = 10−15. The principle is also iterative for IS: the metric is
maximized until a tolerance criterion is reached; here, a toler-
ance criterion of εIS

= 2.10−4 is chosen. In our case, the metric
employed is the maximum pixel intensity of a 2× 2 window
centered on the image. At each step, PTT corrections are applied
(i.e., mirrors are moved), another image is acquired, and the
maximum intensity is subsequently calculated.

Data used for the comparison is from the same dataset so that
the same data is compared between the three methods.

We aim to compare the three methods in terms of wave-
front estimation performance under the presence of noise and
higher-order aberrations. NN3 and NN5 are the two neural
networks used to compare our three methods, trained on at the
corresponding SNR with HO aberrated data. NN coefficients
estimation yields better phase estimations for both the NN5
and NN3 across all SNRs levels. Plus these models demon-
strate a significant improvement in terms of computational
time compared to PD and IS. NN models with their relatively
lightweight architecture are much faster, with the majority of
computational time occurring during training (which is obvi-
ously not taken into account for the inference). Figures 10 and
11 illustrate the performances of both methods relative to their
execution time. The εPD

3 = 10−15 criterion and εPD
2 = 10−7

achieve nearly the same performance at SNR= 100 but with a
different computing time. In Fig. 11 only εPD

2 is used to provide
a fairer comparison between the methods. Compared to the
NN inference, which is stable in terms of computing time, PD
shows limitations in execution time. First, PD takes longer
than NN inferences, and second, the standard deviation of the
computing time is larger. In addition, two distinct clusters are
identified computing phase diversity with a tolerance criterion

Fig. 10. PTT estimation of the NN (green line), phase diversity
method at εPD

3 = 10−15 (dark line), and image sharpening (brown
line) facing the same dataset of PSF generated with 30 nm RMS of
higher-order aberrations at several SNRs regardless of the computing
time.

Fig. 11. Estimation time and precision of estimation for NN, phase
diversity (PD), and image sharpening (IS). Two types of PD are stud-
ied, one fast but less accurate, one slow and more accurate. Test made
over the same 1000 samples from the NN testset with HO aberrations
for SNR= 100. Algorithm computed on a 2,3 GHz Quad-Core Intel
Core i7.

of 10−4, indicating that the number of iterations to reach con-
vergence depends on the criterion shape. Better estimations can
be achieved with a convergence criterion of 10−7. However,
it requires a longer computing time. Additionally, while PD
reaches the diffraction limit requirement on average (red star),
it does exhibit approximately 100 outliers out of 1000 samples.
While IS is widely spread in terms of computing time and is not
reliable, only PD follows NN performance in terms of WFE.
However, the estimation time is at least three orders of magni-
tude slower compared to NN estimation. Therefore, the NN
method appears to be more reliable to accurately estimate the
wavefront compared to a mono-image phase diversity and image
sharpening.

In this section, our primary focus has been examining NN
methods and comparing them to two alternative approaches.
Both phase diversity and image sharpening can naturally be
improved upon. PD methods, for instance, could potentially
benefit from linearized analytic phase diversity [31] to improve
computation time and load. For IS, one could potentially inves-
tigate different image sharpness metrics that provide better
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performance, but also look at faster optimization algorithms
correcting one mode at a time [32].

6. TOWARDS A COMPLETE PHASING
SEQUENCE

Once launched, the telescope will deploy the four petals with a
mechanical accuracy of a few micrometers [5]. The initial stage
of the phasing strategy aims to mitigate the significant piston
and tip-tilt errors introduced during deployment. After initial
segment identification and phasing procedure recurring, for
instance, to the ELASTIC method [2,23], the expected WFE
reaches a sub-λ amplitude over the entire pupil. We have not
managed to train a suitable single NN able to retrieve high per-
formance on large aberrations. However, we propose a solution
with two NNs in cascade (a first NN for the initial large tip-tilt
sensing ignoring the piston, and a second NN for the piston
and the remaining PTT). The AZIMOV phasing strategy relies
on two main steps. First, after deployment as the TT errors are
large (as well as the piston errors), the spots do not superimpose
and the piston errors do not affect (or only marginally) the
resulting image. The primary mirror needs to be first corrected
in tip-tilt in order to recenter each of the four PSFs generated by
the individual segments. This allows the four PSFs to be super-
imposed on top of each other, resulting in a single PSF in the
focal plane image. After this superposition, the piston error can
be estimated. Finally, the remaining piston and residual tip-tilt
errors can be estimated using the NN presented in Section 5.
Our correction can be applied iteratively in closed-loop at
SNR= 100, to process real-time wavefront estimation. The
proposed phasing strategy can be found Fig. 12.

The first iteration corrects for the coarse tip-tilt errors.
Figure 13(b) shows this while the piston errors remain
unchanged. Then after the second iteration, the NN responsible
for fine PTT phasing corrects for the remaining aberrations
eventually converging towards about a nanometer of piston and
residual tip-tilt resulting in <10 nm WFE over the full pupil.
The diffraction limit is reached after two or three iterations
for the 11 MB model, and slightly after four or five iterations
for the 0.94 MB model, Fig. 13(a). The presence of noise at
SNR= 100 increases the standard deviation of the estimation
error. However, the estimation remains well under the require-
ment and shows a great stability during 100 iterations for both
models. In addition, it is important to notice that we limited the
tip-tilt amplitude due to the amount expected in the deploy-
ment, yet larger tip-tilt could be easily added and learned by
our method as long as the PSFs remain in the field of view of the
detector.

Fig. 12. Diagram of the AZIMOV phasing strategy, where φinit

is the initial aberrated phase, φTT
res the residual tip-tilt phase with

uncorrected piston, φTT
C the phase with pre-corrected tip-tilt, φPTT

res the
residual phase after PTT correction, and φC the phase corresponding
to the diffraction limit.

(a)

(b)
Fig. 13. Closed-loop residuals for AZIMOV deployment regime;
mean and STD results over the same 1000 PSFs of the testset at
SNR= 100. Both figures contain the same legend. (a) Average residual
WFE for 100 iterations in a closed-loop over 1000 PSFs of the testset.
The green shaded area represents the bounds of the 10th and 90th per-
centiles. (b) Average PTT residuals for 15 iterations in a closed-loop.
The green shaded area represents the bounds of the 10th and 90th
percentiles. Iteration 0 corresponds to the initial WFE.

7. CONCLUSION

This study explored the performance of neural networks for
phasing a four-segment deployable space telescope with piston,
tip, and tilt aberrations in the range of (20− 120 nm RMS).
The existing state-of-the-art algorithms are deemed too com-
plex because of their iterative nature and large computational
burden for space applications. Alternatively, simplified NN
architectures are explored, which exhibit promising results
for accurately estimating the piston-tip-tilt phasing errors. A
five-convolutional-layer-based Resnet has been implemented
for demonstrating robustness even in the presence of additional
high-order aberrations and noise, by reaching the diffraction
limit in different cases at SNR= 50 and for 30 nm RMS and
60 nm RMS of HO aberrations. Additionally, it outperforms
concurrent methods such as mono-image phase diversity and
image sharpening in terms of computation time by at least a
factor of 100 with comparable noise propagation performance.
Our implementation shows great performance and stability
once applied in a closed loop, for both coarse and fine phasing,
using a relatively simple architecture allowing for fast inference
times of about a few milliseconds per step.

However, using a single in-focus image for FPWF sensing
appears to limit the piston capture range between − λ

4 and λ
4 .

Nevertheless, this limitation might be overcome by using several
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input images. For instance, capturing two images at different
wavelengths or alternatively using an in-focus and an out-of-
focus image could overcome the lambda ambiguity and extend
the capture range. Ultimately, the NN approach provides a more
generic solution, both in terms of aberration capture range and
potentially in terms of scene (point source versus extended).

In our case of simulated data, NNs are driven by the image
formation model. Once on-sky data will be available, fine-
tuning our method can enhance the performance to fit better to
realistic cases.

Finally, our work presents results employing a point source.
Finding such a source may be possible during the initial cali-
bration stage. However, in the context of Earth observation,
obtaining such a point source may be difficult in practice as
objects of interest are typically more complex and extended.
Further work will be directed towards the study of extended
objects in regions of adequate contrast to convey sufficient phase
information.
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