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ABSTRACT

The DOSSA (Decentralization of Space Situational Awareness) project, led by SpaceAble in collaboration with
Unistellar and the Laboratoire d’Astrophysique de Marseille, aims to enhance space surveillance through a
collaborative effort involving amateur astronomers, researchers, and industrial networks, leveraging advanced
technology and data collection to improve space situational awareness in an era of escalating satellite numbers.
This project aims to create a comprehensive sky map of objects transiting around Earth. It benefits from a
large dataset collected by the Unistellar telescope network, a global network comprised primarily of robotically
controllable evScopes 1 and 2 telescopes, each featuring a 11.4 centimeter aperture diameter. We develop
dedicated deep learning algorithms to account for the relatively compact diameters of the telescopes and to
extend detection thresholds. Firstly, we use traditional convolutional neural networks (CNNs) based classifiers
to detect images including a satellite streak, and secondly, we use UNet to identify pixels affected by such
streaks. Both neural networks are trained on realistic simulations generated using our optical Fourier simulation
software, by combining observed sky backgrounds and synthetic satellite streaks spanning a wide range of orbital
parameters. With this strategy, we reach excellent performance on the segmentation of images in test set, with a
recall of 79.6% pixels belonging to the satellites masks, at a false positive rate of 0.001%. For 90% of streak pixels
recovered by the neural networks, we obtain a precision of 96.3% on the predicted satellite masks. This exceeds
the performance of non-ML algorithms and paves the way to measuring accurate satellite positions over broader
magnitudes ranges and down to lower S/N, in order to increase the precision on their orbital parameters.

Keywords: Satellite trails, sky mapping, collaborative science, Unistellar telescope network, amateur observa-
tion, artificial intelligence, deep learning

1. INTRODUCTION

In astronomy, image segmentation is a key component of image analysis pipelines, either as part of the data
reduction stage, or to select and characterize sources of astronomical interest. The first case includes, for instance,
the identification of artefacts such as cosmic rays in images of variable depth and resolution.'>? The second case
covers, for instance, the identification of asteroid trails, the detection and characterization of tidal tails, or the
study of filamentary structures across the Galactic plane.* Fully-convolutional neural networks have become
state-of-the-art for these segmentation tasks, allowing to significantly exceed the performance of traditional
source-finding algorithms such as SExtractor,” while also drastically decreasing the inference time. This paves
the way to developing similar pipelines to analyse satellite streaks with higher efficiency than traditional, non-
machine learning approaches (e.g. Hough transform).
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Figure 1. orbitAI class diagram.

Recently, Ref. 6 have developed a versatile ML pipeline for identifying artefacts in astronomical images,
including the segmentation of extended features such as satellite streaks, diffraction spikes, or nebulosities. While
their method is adaptable to wide range of contaminants, the underlying training images are taken from deep,
wide-field imaging surveys in the optical/near-infrared conducted with modern observing facilities (e.g. CFHT,
Subaru, etc). This makes their data set heavily dominated by seeing-limited images from the best astronomical
sites around the world, and with a relatively low range in depth. Due to the domain shift issues affecting neural
networks, directly applying this pipeline to shallower, short-exposure images from amateur astronomers would
provide moderate to poor performance, even for the segmentation of bright satellite streaks. In contrary, one
need to use representative training data, approaching as much as possible the resolution, depth, and imaging
quality of the target survey.

In this paper, we follow this approach and develop a deep learning framework optimized for the detection
and segmentation of satellite streaks in shallow, short-exposure images from Unistellar telescopes distributed
worldwide. In particular, we focus on the eVscope 1 and eVscope 2 that largely outnumber other Unistellar
telescopes part of the overall network. We aim at reaching optimal detection capacities at the low-S/N regime,
in order to meet our goals in characterizing the faintest possible satellites and space debris. We start with a
description of the image simulation pipeline in Sec. 2, followed by the training, validation and tests of neural
networks in Sec. 3 and 4.

2. IMAGE SIMULATION

The process of image simulation within the DOSSA project relies on the orbitAI Python package, specially built
for our specific needs. In this section, we delve into the fundamental components of this package, highlighting
its key features: the Telescope unit discussed in Sec. 2.1, the Scene unit detailed in Sec. 2.2, and the Detector
unit elaborated upon in Sec. 2.3. The package’s core concept is visually represented through a class diagram,
depicted in Fig. 1.

2.1 Telescope

The Telescope class is the core of the orbitAI module, providing the essential functionalities to simulate an
image of a satellite crossing an observation. We detail the controllable parameters in Sec. 2.1.1 and the three
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Figure 2. Star magnitude probability density function used in SimulatedScene mode.

observing modes in Sec. 2.1.2.

2.1.1 Parameters

diameter: the physical diameter of the aperture (in m),

collecting surface: the effective collecting surface of the telescope(in m?),
focal_length: the effective focal length of the telescope (in m),

observing band: the observing band in which the observation is made (e.g. U, B, V, etc.),

pointing: the alt-az coordinates of the center of the field pointed by the telescope (an astropy SkyCoord
object),

observing mode: one of the three following - diffraction limited, seeing limited or from_background
- the last one not being implemented yet,

ro: Fried parameter, used in the case of a seeing limited observation.

2.1.2 Observing modes

Our simulation tool offers three observing modes, each corresponding to a distinct Scene object type (see

section 2.2). These modes differ in how they generate the background image, which represents the star field
behind the satellite streak.

SimulatedScene: The background is entirely simulated. Star positions are randomly distributed, and their
magnitudes follow the distribution in Fig. 2. This distribution was derived from star density data obtained
from Gaia DR3 (see Fig.2 from Ref. 7).

CatalogScene: As the name suggests, this mode uses real star positions and magnitudes from catalogs
like Hipparcos or Gaia to construct the background image. This approach is ideal for algorithms like
Astrometry.net [astrometry.net] and offers future potential, as discussed in Sec. 2.5.

CompositeScene: This mode combines realism with simulation by overlaying a simulated, noise-free satel-
lite streak onto a real background image captured with a telescope. This creates images that closely
resemble real-world observations, including features like optical aberrations which are absent in purely
simulated backgrounds. This makes them valuable training data for neural networks by incorporating
realistic features, as discussed in Sec. 4.
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Figure 3. Example of time series produced with orbitAI with a satellite orientation of 10° and an altitude of 900 km.
The module produces three consecutive single frames.

2.2 Scene and its components

The Scene class encapsulates all information about the field of view observed by the Telescope. We detail
its key attributes in section 2.2.1. These attributes primarily consist of two class objects: Star (described in
section 2.2.2) and Satellite (described in section 2.2.3). Additionally, section 2.2.4 delves into the subtleties
of building a satellite streak within this scene.

2.2.1 Scene parameters

There are only three parameters accessible through the Scene class.

e stars: a list of Star object containing the stars present in the field of view (empty for CompositeScene).

e satellites: a list of Satellite objects containing the satellites present in the field of view. Currently,
the module only handles the presence of one satellite at a time.

e produce_time_series: a boolean indicating whether the output should be a single frame or a time series
(multiple consecutive frames, as shown in Fig. 3).

2.2.2 Star parameters

e spectrum: a Spectrum object that calculates photon flux for diverse inputs.

e sky_coordinates: alt-az coordinates of the star as an astropy SkyCoord object.

2.2.3 Satellite parameters

e altitude: the altitude of the satellite (in km).
e orientation: the orientation of the satellite relative to the horizontal plane (in degree).
e spectrum: A reference to the same ‘Spectrum‘ object used by the ‘Star class (see Sec. 2.2.2).

e sky_coordinates: alt-az coordinates of the star as an astropy SkyCoord object.

2.2.4 Building streak

This section delves into the process we developed for generating reliable satellite streaks. The process comprises
two key steps: (1) constructing a unitary streak and (2) convolving it with the telescope’s PSF. The first step
presents the most significant challenge and will be the focus of this section. We define unitary streak as the
theoretical unconvolved trace left by a satellite on a detector plane. This trace correspond to a line segment
with a fixed length of A that originates from point A and terminates at point B. Figure 4 (left) illustrate
this definition. The goal of the unitary streak building is simple : provide an exact placement of the streak
in the detector plane especially so that the WCS coordinates matches exactly between detector plane and sky
coordinates. We achieved the desired outcome on the third attempt after exploring two alternative approaches.
Here are these three steps in chronological order:
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Figure 4. Left: line perfect algorithm scheme. Black crosses mark the intersection between the unitary streak and the
pixel grid. Right: pixel perfect algorithm scheme. Black crosses mark the intersection between the unitary rectangle
streak and the pixel grid.

Figure 5. Observed misalignment in consecutive time series frames demonstrating the limitations of the purely compu-
tational subpixel streak placement (first approach in Sec. 2.2.4).

e Computational algorithm: Our initial approach involved creating a one-dimensional array filled with
ones. The array’s length was set to the ceil part of the streak length (i.e. [A]). To account for the
streak length’s fractional part, we assigned a fractional value to the last element. Subsequently, we rotated
this array using the SciPy’s image rotation function with spline interpolation. Finally, we positioned the
resulting image with a subpixel shift to achieve the desired location. However, as evident in the time series
frames superimposed in Fig. 5, this approach resulted in poor streak placement accuracy.

e Line perfect algorithm: In our second approach, we adopted a different strategy. We calculated the
coordinates of the unitary streak’s intersection points with the pixel grid (represented as black crosses on
Fig. 4, left). Finally, for each pixel intersected by the streak, we assigned a value proportional to the
segment length within that pixel (length § of the blue line on Fig. 4, left). This approach yielded improved
accuracy compared to the previous one. However, limitations remained for subpixel displacements or
rotations. As shown in Fig. 6 (top center), where the unitary streak is centered relative to the pixel grid,
we observe that for rotation angles |0] < arctan (1/A), the generated streak appears identical to a vertical
one. Similarly, displacements smaller than a pixel produce the same effect.

e Pixel perfect algorithm: Finally, the third approach proved successful. Building upon the previous
method, we introduced a second dimension to the unitary streak, transforming it into a rectangle with a
length of A + 1 and a width of 1. Rather than calculating the length of a segment within each pixel, we
now assign a value to each pixel based on the area S of the polygon formed by the intersection points and
one or two corners of the pixel itself (see Fig. 6, right). This approach successfully resolves the limitations
associated with subpixel displacements and rotations, as evidenced by the results in Fig. 6 (bottom center)

2.3 Detector

The Detector class offers two essential functionalities: (1) adding noise, mimicking the inherent randomness of
real detectors, and (2) applying a Bayer filter mosaic effect, replicating the color filter pattern present in image
Sensors.
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Figure 6. Top row: “line perfect” streak. Bottom row: “pixel perfect” streak. Left: vertical streaks. Middle: streaks at
a 3° angle. Right: streaks at a 20° angle.

2.3.1 Parameters

resolution: resolution of the image expressed as width x height in pixel,
pixel_size: size of the pixel in um,

exposure_time: exposure time in second,

quantum_efficiency: detector’s quantum efficiency in e~ /ph,
photon_noise: a boolean stating if photon noise should be applied to the image,
readout_noise_variance: the variance of the readout noise in e,
dark_current: dark current in e /s,

offset: constant offset in ADU,

bitdepth:

sensitivity: sensitivity of the detector in ADU/e™.

bayer_order: literal representation of the Bayer filter pattern (e.g. RGGB).

white_balance: a WhiteBalance object containing the relative gain of each color channel.

2.3.2 Noise model

The adopted noise model is a simplified version of the model presented in Ref. 8. Figure 7 illustrates its block
diagram within the orbitAI framework. The physical units of each variable are indicated in red throughout the
diagram. Model steps are the following:

1.

Photon arrival:

(a) The model starts by considering the incoming photon flux, measured in units of photons per square
meter per second (ph/m?/s).
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Figure 7. Block diagram of the noise modeling used in the DOSSA simulations. The rightmost block stands for digitization
of the signal by the ADC.

(b) This flux enters the detector’s pupil and is integrated over time, resulting in the total number of
photons captured by the image.

(¢) A normalized PSF having a unit integral value then multiplied by this number of photons. This step
accounts for the spatial distribution of the photons within the image due to the detector’s optical
properties.

(d) The result of this multiplication is a noise-free image, initially represented in units of photons.

2. Noise addition: The noise-free image undergoes four transformations representing the different noise
sources.

(a) Photon noise is added from a Poisson distribution with an expected value for each pixel corresponding
to the pixel value itself.

(b) The image is then converted from photons to electrons by multiplying the signal by the detector’s
quantum efficiency.

(c) Dark current is added as a constant Poisson noise across the entire detector, with an expected value
of dark_current X integration_time.

(d) Readout noise is added using a normal distribution with zero mean (u = 0) and a variance of
readout_noise_variance (02).

3. Digitization:

(a) Camera gain is applied by multiplying the signal by the detector’s sensitivity.

(b) Digitization step converts the image to a digital format by taking the integer part of the signal and
truncating it to a user-defined bit depth.

(c) Bayer filter is finally applied by multiplying the signal by a mosaic filter (e.g., RGGB) to capture
color information.

2.4 Perceptual evaluation of orbitAI images

In this section, we present a visual comparison between images generated by orbitAI and real-world images
captured with an eVscope 2. Figure 8 shows two images of the same scene. The left image is a real capture
from the eVscope 2, while the right image is a simulation created using orbitAI’s CatalogScene functionality.
We successfully reproduced the background star field with accuracy, and the satellite streak appears positioned
precisely. While the initial comparison reveals promising similarities, a key difference lies in the overall image
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Figure 8. Left: satellite streak observed with a Unistellar eVscope 2. Right: simulated satellite streak produced by
orbitAI using a CatalogScene.

quality. The real eVscope 2 image (Fig. 8, left) exhibits degradation compared to the simulated image (Fig. 8,
right). This is mainly due to the effects of atmospheric turbulence and/or optical aberrations within the telescope
itself. These factors distort the PSF and ultimately reduce the image’s sharpness and fidelity. To achieve greater
realism, potential improvements for orbitAI simulations are discussed in Section 2.5.

To gain further insights, we constructed histogram plots for the images showcased in Fig. 8. These histograms,
presented in Fig. 9, reveal a good level of agreement between the simulated (orange) and real-world (blue) data
distributions. The histograms also show a noticeable difference in the distribution of low and high pixel values
between the real and simulated images. The simulated images appear to lack pixels in both the very low and
very high intensity ranges. The absence of low-value pixels in the simulations could be due to limitations in
modeling non-uniformities within the detector noise. Including a more comprehensive noise model in orbitAI
might improve the simulation’s accuracy in this aspect. The scarcity of high-value pixels might be related to
missing hot pixel simulation in orbitAI. Investigating and incorporating hot pixel behavior into the simulation
process could address this discrepancy.

To mitigate the discrepancies observed in histogram analysis, we opted to utilize the CompositeScene mode,
simulating just the satellite streak onto a real background image. This approach minimizes the influence of
potential inconsistencies between the real and simulated data. By focusing solely on the simulated satellite
streaks, we aim to achieve the best possible match between the training data fed to the neural network and the
real-world data it will encounter during inference.

2.5 Future improvements

While orbitAI currently generates simulated images suitable for neural network training, we are actively seeking
improvements. This section outlines a non-exhaustive list of future development areas to further enhance our
algorithms.

e Adding jitter: Telescopes might experience vibrations, causing the satellite’s trajectory on the detector
plane to deviate from the straight line seen in our simulations. To mimic this effect, we can transform the
rectangle from Fig. 6 into a ”wavy rectangle” that reflects the satellite’s non-linear path.

e Adding flux variation: During image acquisition, satellite flux can vary due to two main factors. First,
atmospheric scintillation, caused by high-altitude turbulence in the Earth’s atmosphere, can lead to fluc-
tuations in the signal intensity. Second, as the satellite moves through space, its orientation relative to
the sun changes, affecting the amount of reflected light captured by the telescope and contributing to an
observed change in brightness.
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Figure 9. Histograms of real eVscope images (in blue) and images simulated in CatalogScene mode with orbitAI (in
orange). Left: histograms for a scene without satellite. Right: histograms for a scene with a satellite. The scale is log-log.

e Adding phase aberrations: While travelling to the detector, the wavefront coming from the scene encounters
phase aberrations, mostly due to atmospheric turbulence and optical aberrations within the telescope itself,
leading to a quality loss in the final image.These phase aberrations can be modeled in the simulation by
applying a phasescreen to the pupil plane.

e Extracting the PSF from the background image for improved realism: To achieve a more realistic composite
image where the simulated streak seamlessly blends with the background, we can extract the PSF from the
background itself. This extracted PSF can then be used to generate the satellite streak, ensuring a more
accurate representation. However, this method requires the presence of at least a few bright stars in the
image. The absence of such stars limits the applicability of this technique.

e Setting satellite position from its orbital elements: Currently, the Telescope object points to a user-defined
sky region through the pointing attribute and the Satellite’s coordinates are set relatively to this value.
However, for a more general simulation framework, we propose incorporating orbital elements into the
Satellite object as this would allow us to validate and improve our orbital element estimation algorithms

3. SATELLITE DETECTION WITH DEEP LEARNING

Analyzing satellite streaks for space surveillance not ony requires to identify the presence of such satellites over
broad ranges of telescope images, but also to accuretly identify the pixels belonging to the streaks in order to
reconstruct the satellite orbital parameters. We follow a two step approach to detect exposures including satellite
streaks and to identify pixels affected by such streaks. First, the binary classification of images with or without
streak is conducted with convolutional neural networks (CNNs) described in Sec. 3.1. Second, the segmentation
of images with a detected streak is conducted with a UNet described in Sec. 3.2. Both types of networks are
trained on orbitAI simulations, either in SimulatedScene or in CompositeScene mode, using various data sets
with different parameter distributions. In Sec. 4, we further test the networks trained on composite simulations
which provide better performance.

3.1 Image classification with CNNs

The neural networks for classification are simple CNNs inspired from AlexNet.” Given the large dimensions of
eVscope 1 and 2 images of 664 x 496 and 1032 x 768 pixels, respectively, the CNNs are trained on smaller cutouts
and the model is then applied to the entire images using sliding windows.
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Figure 10. Properties of satellite streaks injected in the composite simulations. Left: Average S/N per pixel within the
ground-truth satellite masks. Middle: Total signal obtained by summing all pixels within the ground-truth masks. Right:
Streak length in pixels.

The baseline CNN has two convolutional layers with 5x5, and 4 x4 kernels, and 32, and 64 filters, respectively.
Max-pooling layers with 4 x4 kernels and stride = 4 are inserted between the convolutional layers. This is followed
by two fully-connected hidden layers with 512, and 16 neurons, and a single-neuron output layer. Non-linear
ReLU activations are applied between each layer, and the last fully-connected layer has a sigmoid activation,
resulting in the output score in the range [0;1].

Several variations around this baseline CNN have been tested. We tried adding a third and a fourth convolu-
tional layer, but given the simplicity of features over the training images, this did not improve the classification
performance. In addition, we tried using larger convolutional kernels, increasing the number of filters per con-
volutional layer, using 2x2 kernels and stride = 2 in the max-pooling layers, and increasing the number of
fully-connected layers. These CNNs perform similarly to the baseline and are not discussed in Sec. 4.

All CNNs are trained on a set of composite simulations from orbitAI obtained by injecting simulated streaks
on real eVscope 1 and 2 images of stars and sky background. We use 71 sequences of satellite observations taken
by amateur astronomers until April 2024. These sequences include between 200 and 400 exposures of 150 ms,
and span a broad range in observing conditions and data quality. The sequences are inspected visually and with
a source-finding algorithm based on Sextractor® to identify and discard exposures including a detected satellite
or a streak candidate. After cleaning, this results in a total of 26103 telescope images.

To simulate the streaks, we randomly draw satellite altitudes between 600 and 900 km, corresponding to the
low Earth orbit (LEO), using a uniform distribution. The satellite magnitudes and orientations are drawn from
flat distributions between 5 and 10 mag, and between 0 and 360 deg, respectively. The low S/N of these short,
150 ms exposures prevent to extract the seeing FWHM per individual images from the star light profiles, and we
therefore use a representative range in Fried parameter rg between 2 cm and 4.5 cm. The ground-truth satellite
masks from the simulations are obtained by convolving the linear satellite streak with a disk of diameter taken
as the PSF FWHM. Only the injected streaks fully enclosed within the fields-of-view of eVscope 1 and 2 images
are accepted.

While these simulations only contain of 71 independent fields-of-view, the random injection of streaks at
various positions, orientations, and brightnesses guarantees the unicity of each 26103 individual image. The S/N
of simulated streaks are evaluated in two different ways:

o using the average signal per pixel within the ground-truth satellite masks (SNRayg),

e and using the total signal obtained by summing all pixels within the ground-truth masks (SNRyot)-
In both cases, the background noise is obtained from the width of the Gaussian function fitted to the background

image before streak injection. The histograms of SNR,y,, and SNRy over the training set are shown in Fig. 10,
together with the lengths of simulated streaks in pixel units.
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We use smaller image cutouts to train and validate the CNNs more efficienctly. Various sizes of image cutouts
were tested, with values ranging between 128 and 512 pixels, and better performance are obtained for CNNs
trained and tested on 128 x 128 pixel cutouts. In addition, we also tried varying the minimal number of pixels
within the satellite masks, for positive examples in the training set. No significant impact was found when
varying this lower limit between 50 and 500 pixels, and we eventually fixed to a minimum of 100 pixels.

The normalisation of images has a major impact on the performance of the CNN classifier on real eVscope
images. Different types of image normalisations were tested, such as normalising pixel values to the range
[0:1], or subtracting the mean and dividing by the variance computed either over the entire telescope images,
over the small 128 x 128 pixel cutouts, or over sky background regions. The baseline normalisation procedure
that showed better performance consists in applying the following transformation to each image cutouts before
training, validation, and test:

D = arcsinh (Dulmg> , (1)
Oimg
where D and D are the input and normalised images, respectively, jtimg and oimg are the average and standard
deviation of pixel values within the entire 128 x 128 pixel cutouts. The arcsinh term is crucial in reducing the
relative offset between small and large pixel values (as also found by Ref. 6).

In total, 33408 and 8352 normalised image cutouts are kept for training and validation, respectively, with a
balanced ratio of positive and negative examples. Parameter optimization is achieved with mini-batch stochastic
gradient descent with a batch size of 32. We minimize the binary cross-entropy loss expressed as:

N
1
BCE(y, poxy) = =5 D ¥ log(pi) + (1 = yi) log(1 = pu), (2)
k=0

where y, and px are the values of the ground-truth and predicted labels respectively, and N is the number of
images per batch. Values of py result from the sigmoid activation and range from 0 to 1. After a preliminary
search for the best neural network hyperparameters, we fixed the learning rate to a value of 0.001 and we use
an Adam optimizer. The networks are trained over 100 epochs and saved at the epoch with minimal validation
loss.

3.2 Image segmentation with UNets

The identification of pixels affected by satellite streaks is conducted with state-of-the-art neural network archi-
tectures for image segmentation tasks. As baseline, we use the UNet architecture presented by Ref. 2 as part of
their Cosmic-coNN pipeline for cosmic ray identification in images from Las Cumbres Observatory (extending the
work from Ref. 1 for HST imaging). This is a type of encoder-decorder convolutional neural network, providing
satellite mask predictions with same dimensions as the input. Despite the different morphological signatures
between cosmic rays and satellite streaks, the Cosmic-coNN network architecture is optimized for segmentation
of low-resolution astronomical images, and is sufficiently flexible for broad range of image sizes and resolutions.
It is also better suited than the original UNet from Ref. 10 that was developed for medical imaging.

The Cosmic-coNN UNet (see Fig. 3 of Ref. 2) starts with a single telescope image and a convolutional layer
with 3x3 kernel and ReLU activation. The decoder has two downsampling stages with 2x2 max-pooling layers
and one convolutional layer per stage. The bottleneck includes a single convolutional layer with 3x3 kernel and
ReLU activation, and its features maps are four times smaller than the input telescope images. The decoder
comprises two upsampling stages with a 2x2 transposed convolution with stride of 2, and one convolutional layer
per stage. Convolutional layers have stride of 1 and either have 32 or 64 filters. Skip connections allow to copy
and concatenate information from the various stages of the encoder to the decoder, in order to propagate both
low- and high-level morphological features to the decoder. The last layer has a sigmoid activation.

We addition, we tried modifying the architecture of this baseline UNet by adding or removing one down-
sampling/upsampling stage in order to increase or decrease the network depth. On the one hand, removing one
stage lowers the generality of the model to different feature sizes and substantially degrades the reconstruction of
satellite masks. On the other hand, adding one downsampling/upsampling stage does not have a strong impact.
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We also tested various numbers of features maps per convolutional layer. Finally, we trained the original UNet
from Ref. 10 without obtaining better performance, and we therefore kept the Cosmic-coNN architecture as
baseline.

The UNet is trained and validated on images of 256 x 256 pixels obtained by extracting random cutouts from
the composite simulations described in Sec. 3.1. We use a total of 30000 cutouts with a balanced ratio of 50%
images with injected streaks, and 50% without streak, in order to train the networks to exclusively extract the
pixels affected by the satellites and to ignore stars and artefacts over the fields. To construct the set of images
with satellite streaks, we randomly draw simulations from the overall set of 26103 images, and we randomly draw
a cutout center, while also requiring a minimum of 100 pixels within the simulated masks. Ground-truth masks
are set to binary pixel values equal to 0 and 1, for pixels outside and within the satellite masks, respectively.
The baseline image normalisation of CNN classifiers is then applied to these ground-truth images.

These simulations in CompositeScene mode are covering a large diversity in observing conditions, streak
properties, and spatial density of background stars in the field, while also representing the differences in detector
properties between eVscope 1 and 2 telescopes. This strategy helps train a neural network able to generalize to
future sets of observing sequences registered by amateur astronomers, regardless to variations in seeing FWHM,
or to the presence of stars, and artefacts in the fields. In line with future space surveillance objectives, the model
also needs to guarantee reliable satellite mask predictions down to low S/N. Other UNet trained on data sets
fully simulated with orbitAI do not meet these requirements and are discarded.

Similarly to the CNN classifiers, the UNet is trained up to 100 epochs with mini-batch stochastic gradient
descent. We minimize the binary cross-entropy loss per pixel, as commonly done in classification problems:

N Y X
Z Z Z Vijk log(pijx) + (1-vijx) log(1-pijk), (3)

k=0 j=0 i=0

BCE(y, p)

Z\H

where y; j « and p; j « are the values of the ground-truth and predicted satellite masks for pixel (i,j) from image
k, respectively, and X, Y, and N, are the image dimensions in pixel units and the number of images per batch,
respectively. The UNet is trained over 100 epochs with early stopping, and we obtain a small generalization gap
between the training and validation loss curves.

4. EVALUATION OF PERFORMANCE AND DISCUSSION
4.1 Construction of the test sets
4.1.1 Testing the CNN classifiers

The CNN classifiers are tested on a range of observing sequences of LEO satellites collected by amateur as-
tronomers with eVscope 1 and 2 telescopes between January and March 2024. Each sequence comprises nearly
400 individual exposures of 150 ms, for a total duration of 1 min, allowing to detect the satellites crossing the
fields-of-view over multiple exposures. We use a total of 67 test sequences corresponding to observations of 67
different satellites over different fields-of-view with variable spatial densities of stars. These sequences were in-
spected both visually and with a source-finding algorithm based on Sextractor,” in order to identify the exposures
containing a detected satellite streak and to build a ground-truth catalog of positives (exposures with streak)
and negatives (exposures without streak). Exposures with streaks crossing the image borders are considered as
positives. On average, the streaks of primary satellites targeted by the observers are detected over three to 10
exposures along the 400-image sequences. A secondary, untargetted satellite is detected in 5 out of 67 sequences.

After labelling, the test set contains a total of 387 positive images with detected satellite streaks, and 23283
negative images with stars, sky background, but no detected streaks. This contains a wide diversity of scenes
with a total number of stars ranging from two to 15, various types of observing conditions, and imaging quality.
The sequences with lower data quality were taken with variable clouds, and some exposures are affected by
field-of-view drifts, resulting in distorted light profiles for stars in a subset of exposures. This allows to test the
robustness of the CNN classifications in presence of realistic observing artefacts. The total S/N of streaks from
primary satellites in these 67 sequences range from 200 to 50,000, with a peak in the range 8000-10,000. Overall,
about 20% sequences are observed with eVscope 1 telescopes, and 80% with eVscope 2.
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Figure 11. Example of satellite streaks with different values of SNRaye simulated with orbitAI. The CompositeScene
images with injected streaks are shown on the left panels, and the ground-truth satellite masks on the middle, while the
right panels show the binarized satellite masks predicted by the UNet. From top to bottom: streak with SNRave € [0;0.5]
(blue curve in Fig. 14), with SNRav, € [0.5;1] (orange curve), with SNRayve € [1;3] (green curve), with SNRave € [3;10]
(red curve), with SNRavg € [10;30] (purple curve).

The CNNs are applied to the telescope images of 664 x 496 or 1032 x 768 pixels using sliding windows of
128 x 128 pixels with an overlap of 20 pixels. The CNN scores are computed separately for each sliding window,
without accounting for correlations between neighbouring windows. We then assign a score prediction per image
Pimg, by combining the CNN score pcnn,1 for each individual sliding window 1. Several methods have been tested,
and the best performance were obtained by simply assigning the highest score to the overall image as follows
Pimg = max (pcnn,1). Since real satellite streaks are longer than the window size, we also tried combining the
scores from neighboring windows, but without improving the performance discussed in Sec. 4.
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4.1.2 Testing the segmentation UNets

The UNet is tested on a subset of 2174 composite simulations described in Sec. 3.1, and following the parameter
distributions shown in Fig. 10. The UNet is trained on 256 x256 pixel cutouts and its application to the 664 x 496
and 1032 x 768 pixel images from eVscope 1 and 2 telescopes can be conducted in several ways. Since the UNet
is a fully convolutional architecture, the trained model can in principle be applied directly to segment the entire
images. This however leads to suboptimal performance and we rather use an overlapping sliding window of
256 %256 pixels, equal to the dimensions of the training images. For a given pixel, the UNet score is taken as the
average of all scores evaluated from the different sliding windows covering this pixel.

The segmentation accuracy gradually increases when decreasing the step size between sliding windows. As
a tradeoff between accuracy and computational cost, we use steps of 10 pixels, which is sufficient to generate
smooth satellite masks. We also discard a 10-pixel wide band around the image borders to exclude pixels with
a single UNet score. This also ensures that performance are not altered by imaging artefacts near the borders.

4.2 Performance metrics
The performance of the neural networks for classification and segmentation are evaluated with a range of metrics.

For the CNN classifiers, we use the receiver Operating Characteristic curves (ROC) corresponding to the true
positive rates plotted as a function of false positive rates by varying the network scores threshold in the range
[0;1]. The true positive rate (TPR or recall) is defined as:

TP
TPR = — 4
R= 1. ()
where TP is the number of images with satellite streak correctly identified by the CNN, and AP is the total

number of images with streak in the test set. The false positive rate (FPR) is defined as:

FP
FPR = — 5
~ 5)
where FP denotes images with a streak candidate wrongly identified by the CNN, and AN corresponds to the
number of images without satellite streak in the test set.

We also compute the area under ROC curve (AUC). Networks with better classification performance have
higher TPR, lower FPR, and therefore a higher AUC approaching a value of 1. The classification step is aimed at
efficiently selecting individual exposures with candidate satellite streaks among the entire observing sequences,
for further analysis and segmentation with the UNet. We therefore measure the TPR at a FPR of 1%, to optimize
the recall at low contamination. Exposures incorrectly classified by the CNN as positives can be discarded during
the second, segmentation stage, using the overall shape and area of the predicted satellite masks.

For the segmentation UNet, we also evaluate the ability to infer accurate satellite masks using the ROC
curves. This is a pixel-wise binary classification problem, with the TPR and FPR now measured by summing
over pixels in each image, and then over all images in the test set. The true positive rate is therefore:

number of streak pixels correctly classified

TPR (6)

~ total number of ground truth streak pixels’
and the false positive rate is defined as :

FPR — number of nonstreak pixels incorrectly classified as positives

(7)

total number of ground truth nonstreak pixels

We aim at optimizing the TPR, namely the fraction of satellite streak pixels correctly classified, for low FPR, in
order to correctly reconstruct the satellite masks with a limited number of additional pixels incorrectly flagged
by the neural network. To limit the number of false positive to 10 pixels maximum per image, we measure and
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Figure 12. Performance of the baseline CNN evaluated on the overall test set (blue curve) using the Receiver Operating
Characteristic curves (ROC). We optimize the TPR for a contamination level of 1%. The orange curve illustrates the
higher performance obtained after excluding streaks cropped in the telescope images.

optimize the recall at a very low FPR of 0.001%. While the AUC and TPR at 0.001% FPR help quantify the
level of contamination, these metrics can be combined with the precision, which is defined as:

number of streak pixels correctly classified

(8)

recision =
P number of predicted streak pixels
Precision is only sensitive to positive pixels, and therefore insensitive to the low ratio of streak over non-streak
pixels in real telescope images. Similarly to the ROC, we also plot the precision-recall curves to compare the
relative performance of individual neural networks. Finally, we quantify the precision for a fixed threshold in
TPR (or recall) of 90% to compare and optimize the precision of predicted UNet masks.

4.3 Performance of the classification networks

The performance of the baseline CNN classifier on the test set is shown in Fig. 12. We obtain an AUC of 0.9833
and a TPR at 1% FPR of 90.2%. These excellent performance demonstrate the ability of the CNN to generalize
to real observing sequences.

Most exposures with a satellite streak missed by the CNN actually correspond to satellites crossing the image
borders. These exposures are providing incomplete masks and are therefore useless for estimations of orbital
parameters. We replotted the ROC curves after excluding these exposures from the test set and found a major
improvement in performance, with an AUC of 0.9987 and a recall at 1% FPR of nearly 99%.

The CNN is able to identify and exclude images without satellite streak despite the diversity in observing
conditions and imaging quality covered by these 67 sequences. In particular, the network correctly classifies the
few exposures affected by unstable telescope pointing and showing extended star light emissions, despite the
similarities with the morphological signatures of satellites. This network classifies an entire observing sequence
of 400 exposures within 10 s on a single CPU. This allows to efficiently and robustly exclude empty exposures
before the segmentation stage, which is also a major advantage in terms of computational time.

4.4 Performance of the segmentation networks

Our UNet model reaches excellent performance on the overall test set of 2174 images, with an AUC of 0.9923 and
a TPR (or recall) of 79.6% at a FPR of 0.001% as shown in Fig. 13. When lowering the score threshold, the TPR
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Figure 13. Performance of the baseline UNet (architecture from Cosmic-coNN) evaluated on the overall test set. The
small crosses mark the evolution of network score thresholds along the curves. Left: Receiver Operating Characteristic
curves (ROC). We optimize the TPR for a low FPR of 0.001% (extreme-left part of the plots), which corresponds to
elevated ratios of streak pixels correctly identified, for a maximum of 10 false positive pixels. Right: Precision-recall
curves. We optimize the precision at a recall of 90%, as marked with the colored circles.

increases to ~85% and ~90% at 0.01% and 0.1% FPR, respectively. Moreover, for thresholds corresponding to
90% of streak pixels recovered by the UNet (90% recall), we obtain a precision of 96.3% on the predicted satellite
masks. These performance illustrate our accurate reconstructions of the linear streaks, without discontinuities,
and without detection of secondary contaminant streaks over the fields (see lower panels in Fig. 11). The few
pixels incorrectly classified as streak pixels (false positives) either match the position of the brightest stars in the
fields, or fall over empty background regions. This broad distribution of FP pixels helps further clean the masks
with separate criteria based, for instance, on shape, or compactness. Overall, these aspects make the predicted
satellite masks robust enough to serve as inputs for orbital parameter measurements with separate pipelines.

Our goal is to obtain a versatile model able to segment satellite streaks of arbitrary length and S/N, over
stellar fields with variable number densities and magnitude distributions, and over various types of observing
conditions. We evaluate the performance of the UNet in separate bins to further quantify the impact of:

e telescope version (eVscope 1 or 2),

S/N of the injected satellite streak, using both SNR,y, and SNRyo definitions,

total length of the streak in pixels,

value of RO applied to the simulated satellite mask,

number of stars in the background image.

We find that performance mainly depend on the S/N of the injected streak. With use the SNR,,, definition
and divide the test set into five bins with SNR,y, € [0;0.5], [0.5;1], [1;3], [3;10], and [10;30], to keep similar
number of images per bin. Since the ground-truth masks are convolved with the PSF, averaging over all pixels
enclosed in these masks drives the SNR,y to these low values. Examples of simulated streaks from these five
bins are shown in Fig. 11. In the highest S/N bin, we reach an AUC~1, an excellent TPR of 91.3% at 0.001%
FPR, and a nearly perfect precision of 99.8% at 90% recall. The performance gradually decrease for lower S/N,
as shown with the ROC and precision-recall curves in Fig. 14. Compared to the values in the highest S/N bin
we find that, at 0.001% FPR, the recall decreases by 2.4% for SNRa, € [3;10], by 6.1% for SNR.s € [1;3], by
18.3% for SNRaye € [0.5;1], and by 50.3% for SNR,yg € [0;0.5]. Variations in the precision-recall curves are more
moderate, except for the lowest S/N bin reaching a precision of only 29.8% at 90% recall. We find similar results
when dividing the test set into SNR;t bins.
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Figure 14. Same as previous figure, after dividing the test set into bins of SNRavg. The large hexagons shows the
performance of image segmentation with the SExtractor script, which serves as the baseline non-ML method.

The top row in Fig. 11 shows that simulated streaks with SNR,v, < 0.5 are typically near the noise level,
and hardly distinguishable by eye. Even though these tricky examples dominate the overall distribution of
images in the training set (see Fig. 10), the UNet has difficulties in extracting these types of streaks as a single,
linear feature. The predicted satellite masks recover the correct position of the faint injected streaks, but they
are typically separated into multiple, discontinuous portions. On a positive note, since the number of FP pixels
remains very low for streaks with SNR,v, < 0.5, the UNet predictions help identify the satellite positions securely.

Besides the dependence on S/N, we find a significant variation in performance with the telescope version.
At 90% recall, the UNet predictions have precisions 12.7% higher for images taken with eVscope 1 telescopes
than images from eVscope 2 (96.8% compared to 84.1%). Since the S/N distributions remain comparable for
test images taken with eVscope 1 and 2 telescope, these variations could be due to differences in the detector
properties, making the Bayer matrix more prominent in eVscope 2 images.

We measure little or no change in performance as a function of streak length, number of stars, and value
of RO. Table 1 shows that the three metrics are relatively stable for these various bins. For instance, the
precision at 90% recall only changes by 6% as a function of the number of stars enclosed in the fields-of-view.
The ROC curves divided into bins of streak length do not show a clear evolution, suggesting a comparable level
of contamination for simulated streaks of variable length. The precision-recall curves, however shows stronger
variations, with a precision at 90% recall 20% lower for streaks with length >230 pixels. This illustrates the
complementarity between diagnostics inferred from the ROC and precision-recall curves.

5. CONCLUSION

We have developed a deep learning pipeline to detect satellite streaks in short-exposure images taken by amateur
astronomers as part of the Unistellar network. Our two-step approach optimized for analysing large data sets
starts with a CNN classifier separating images with and without streak, followed by the segmentation of images
with streak candidates based on a UNet. Both networks are trained on images simulated with our Python
package orbitAI, which injects synthetic streaks on observed sky backgrounds. Our CNN classifier shows an
excellent recall of 90.2% at 1% FPR on a set of 387 positive and 23283 negative real images from eVscope 1 and
2 telescopes. Performance become nearly-perfect when focusing on streaks enclosed within the fields-of-view,
which are most useful for orbital parameter measurements. The segmentation step reaches a recall of 79.6%
pixels within satellite masks, at a false positive rate of 0.001%. For 90% recall, we obtain a precision of 96.3%
on the predicted satellite masks. This largely improves the performance of non-ML algorithms and paves the
way to measuring accurate satellite positions over broader magnitudes ranges and down to lower S/N.

In the future, we will further improve the performance in the low S/N regime, in order to meet our goals on
the characterization of LEO satellites and smaller space debris. We will adapt the CNN to perform multiclass

Proc. of SPIE Vol. 13094 1309455-17



C 0.45 0.340.20.2.1512 0.07 0.02 100 -
100 0.59 002 5
w12 % 46
032.29-9' 2
80 ; 90|~ o
< 7
9
— 60 = -
9 = 80
= o
x a
v
= a0 o 70k
o
S0k~ SNREOL=[0;1500]- AUC = 0.9792 - TPR at 0.001% FPR = 54.1% —— SNRtot=[0;1500] - precision at 90% recall = 61.0%
—— SNRtot=[1500;3000] - AUC = 0.9999 - TPR at 0.001% FPR = 83.2% 60 —— SNRtot=[1500;3000] - precision at 90% recall = 98.4%
—— SNRtot=[3000;7000] - AUC = 0.9999 - TPR at 0.001% FPR = 87.5% —— SNRtot=[3000;7000] - precision at 90% recall = 99.2%
—— SNRtot=[7000;15000] - AUC = 0.9999 - TPR at 0.001% FPR = 88.9% —— SNRtot=[7000;15000] - precision at 90% recall = 99.6%
O e — =[15000;50000] - AUC = 1.0 - TPR at 0.001% FPR = 90.8% | = SNRtot=[15000;50000] - precision at 90% recall = 99.8%
i | L L | | | . L L
1073 102 10T 10° 10T 0—3p 20 50 60 70 8 90 100
FPR [%] recall [%]
100} 0392621012007 o 100
0.45
80 90
<
= 60 = 8ol
X — 80
= o
£ @
= 401 § 70~
Q
20k —— TrLen=[0;170] - AUC = 0.9982 - TPR at 0.001% FPR = 80.4% —— TrLen=[0:170] - precision at 90% recall = 97.6%
TrLen=[170;190] - AUC = 0.998 - TPR at 0.001% FPR = 78.9% | 60} —— TrLen=[170;190] - precision at 90% recall = 97.0%
—— TrLen=[190;210] - AUC = 0.9889 - TPR at 0.001% FPR = 76.8% —— TrLen=[190;210] - precision at 90% recall = 93.8%
—— TrLen=[210;230] - AUC = 0.9907 - TPR at 0.001% FPR = 79.2% —— TrLen=[210;230] - precision at 90% recall = 96.0%
(O | —— TrLen=[230;500] - AUC = 0.981 - TPR at 0.001% FPR = 71.9% | | —— TrLen=[230;500] - precision at 90% recall = 77.1%
| 1 1 1 i | | L Lo
1073 10~ 10T 100 10T =3 20 50 60 70 80 90 100
FPR [%] recall [%]
100 0.77
90
9
~ 60| = gol-
&\c' g 80
£ @
= 401 o
1]
o L
5 70
20 —— NbrStar=[0;3] - AUC = 0.984 - TPR at 0.001% FPR = 76.1% e ;3] - precision at 90% recall = 92.2%
—— NbrStar=[3;6] - AUC = 0.9939 - TPR at 0.001% FPR = 78.3% 60 —_ 1- precision at 90% recall = 95.6%
—— NbrStar=[6;9] - AUC = 0.9971 - TPR at 0.001% FPR = 78.2% - 1- precision at 90% recall = 96.7%
—— NbrStar=[9;12] - AUC = 0.9973 - TPR at 0.001% FPR = 80.7% — 2] - precision at 90% recall = 97.3%
Q [ —— NbrStar=[12;20] - AUC = 0.9997 - TPR at 0.001% FPR = 79.0% —— NbrStar=[12;20] - precision at 90% recall = 98.2%
L 1 1 L | | I 1 1 1 1 Loy
1073 102 10T 100 107 0=35 20 S50 60 70 8 90 100
FPR [%] recall [%]
0.77 0.77
100 059
90
S
~ 60 fa L
§ p 80
o
& @
[9)
= 401 o 7oL
o
20 —— R0=[0.02;0.025] - AUC = 0.9893 - TPR at 0.001% FPR = 76.9% J—
R0=[0.025;0.03] - AUC = 0.9973 - TPR at 0.001% FPR = 76.7% | 60 _—
—— R0=[0.03;0.035] - AUC = 0.9917 - TPR at 0.001% FPR = 82.1% —— R0=[0.03;0.035] - precision at 90% recall = 96.8%
—— R0=[0.035;0.04] - AUC = 0.993 - TPR at 0.001% FPR = 81.8% —— R0=[0.035;0.04] - precision at 90% recall = 97.5%
() | —— R0=[0.04;0.045] - AUC = 0.9941 - TPR at 0.001% FPR = 80.2% —— R0=[0.04;0.045] - precision at 90% recall = 97.5%
— - - L - 50—l | | . | | | ey
10 10 10 10 10 30 40 50 60 70 80 90 100
FPR [%] recall [%]

Figure 15. Same as previous figure, after dividing the test set into bins of SNRyot, streak (or trail) length, absolute
number of stars, and value of RO. Left: Receiver Operating Characteristic curves. Right: Precision-recall curves.
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Table 1. Evaluation of the UNet performance for segmentation of satellite streaks in the test set.

Test set Area under TPR at precision at  number of
ROC 0.001% FPR  90% recall  test images
all 0.9923 79.6% 96.3% 2174
eVscope 1 0.9929 80.5% 96.8% 1854
eVscope 2 0.9825 74.6% 84.1% 320
SNRayg € [0;0.5] 0.9657 11.0% 20.8% 337
SNR,ve € [0.5:1] 0.9998 73.0% 96.5% 347
SNRavg € [153] 1.0 85.2% 99.0% 551
SNRoyg € [3;10] 1.0 88.9% 99.6% 559
SNR.ve € [10;30] 1.0 91.3% 99.8% 380
SNR¢ot € [0;1500] 0.9792 54.1% 61.0% 594
SNRtot € [1500;3000] 1.0 83.2% 98.4% 358
SNRtot € [3000;7000] 1.0 87.5% 99.2% 398
SNRtot € [7000;15000] 1.0 88.9% 99.6% 359
SNRtot € [15000;50000] 1.0 90.8% 99.8% 462
Streak length € [0;170] 0.9982 80.4% 97.6% 737
Streak length € [170;190] 0.9980 78.9% 97.0% 495
Streak length € [190;210] 0.9889 76.8% 93.8% 459
Streak length € [210;230] 0.9907 79.2% 96.0% 363
Streak length € [230;500] 0.9810 71.9% 77.1% 166
Number of stars € [0;3] 0.9840 76.1% 92.2% 480
Number of stars € [3;6] 0.9939 78.3% 95.6% 920
Number of stars € [6;9] 0.9971 78.2% 96.7% 980
Number of stars € [9;12] 0.9973 80.7% 97.3% 160
Number of stars € [12;20] 0.9997 79.0% 98.2% 80
RO € [0.02;0.025] 0.9893 76.9% 94.5% 482
RO € [0.025;0.03] 0.9973 76.7% 96.6% 531
RO € [0.03;0.035] 0.9917 82.1% 96.8% 477
RO € [0.035;0.04] 0.9930 81.8% 97.5% 523
RO € [0.04;0.045] 0.9941 80.2% 97.5% 207

classification and separate exposures with faint satellite streaks from the brighter, obvious streaks, in order to
process the low S/N exposures separately. We will then train a specific UNet optimized for these faint streaks
and we will carefully monitor its performance in the low S/N regime, and over broad ranges of data qualities
and observing conditions.
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