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ABSTRACT

As the Extremely Large Telescope (ELT) nears operational status, the focus is made on maximizing its capabilities
to produce the best possible images. Among other influential factors, the differential pistons – caused by the joint
presence of spiders breaking the spatial continuity of the wavefront and low-order aberrations from various origins
– significantly impact the overall image quality and must therefore be addressed. Our study is centered on utilizing
Neural Networks (NN) to accurately estimate the ELT’s six differential pistons in the presence of turbulence
residuals using a 2x2 Shack-Hartmann wavefront sensor (SHWFS). The results of this work could be applied
to instruments like HARMONI or MORFEO, which will be equipped with 2x2 SHWFS for their natural guide
star wavefront sensing. In our earlier work, the use of ResNet networks fed with data covering all pupil/SHWFS
rotation angles demonstrated success in piston estimation. In that study, a simplified atmospheric turbulence
model was employed, consisting solely of turbulence residuals, implying perfect correction for frequencies below
the deformable mirror’s cutoff frequency. In this paper, we propose to evaluate the network’s performance under
more realistic atmospheric turbulence conditions relevant to the ELT. We show that the network can still extract
differential piston information from single-frame images, while exhibiting increased uncertainty in its estimation.
However, using 10-frame averaged images leads to a significant improvement in root mean square error (RMSE)
performance. We conclude this work by addressing remaining open questions and outlining potential future
research directions. These findings contribute to refining the NN models usage for cophasing applications,
addressing alignment challenges, and enhancing ELT instrumentation performance.
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1. INTRODUCTION

The Extremely Large Telescope1,2 (ELT), currently finalizing the construction of its dome structure, will become
the world’s largest optical telescope with expected first light in 2028. With its 39-meter aperture, the ELT will
surpass all existing optical telescopes. This unprecedented capability will open new possibilities for astronomical
observation, pushing our understanding of the Universe to new heights. This innovative telescope, by its novel
architecture, will present unique control challenges, requiring new solutions to achieve its full potential.

Amongst these challenges, the so-called petaling effect3 is of primary importance. Due to the large secondary
mirror structure of the ELT (with foreseen 25 cm spiders), the entrance pupil will be split into six areas called
petals. These petals, however, can exhibit differential piston errors, also know as petaling, under certain observing
conditions, thereby degrading the overall image quality of the telescope. To achieve its 4-mas angular resolution
goal in the visible wavelength, the ELT’s phasing strategy must address and correct for these differential piston
errors.
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First generation instrument like HARMONI4 or MORFEO5 will come equipped with a 2x2 Shack-Hartmann
wavefront sensor (SH-WFS) for low-order wavefront sensing using an off-axis natural guide stars (NGS). These
sensors will produce four focal images which will be used to measure tip-tilt and focus aberrations that are not
sensed by the Laser Guide Star (LGS) systems. Taking advantage of this configuration, the fours focal images
can be used to measure the differential piston as they inherently contain the necessary informations in their point
spread function (PSF).

Deep learning (DL) techniques have revolutionized the field of image analysis. Their ability to learn complex
patterns from a large amount of data makes them particularly suited for 2D images application. The effectiveness
of DL algorithms for differential piston sensing is well-established in prior publications.6,7 In our previous work,8

we successfully demonstrated that our network, built using the DEEPLOOP9 deep learning environment, can
retrieve differential piston information from 2 × 2 SH-WFS images under simplified atmospheric conditions,
assuming perfect adaptive optics (AO) correction for frequencies below the deformable mirror’s cutoff frequency.
Building upon these initial findings, we opted to investigate the performance of our algorithm under more realistic
atmospheric turbulence conditions. We created five representative turbulence profiles using the Python TIPTOP
library10 and we present in this paper the results we obtained under these conditions.

The plan of the paper is as follow. Section 2 details the instrumental setup and key experimental parameters.
The variables and notations are defined in this section. Section 3 focuses on the simulation environment for
image generation. In particular, we dedicate one section to the selection of turbulence profiles and one section to
the choice of differential piston distributions, which represent major parameters of our work. Section 4 presents
the deep learning framework employed from the dataset structure to the network’s architecture. Finally, Sec. 5
reports the findings obtained for the tested configurations and Sec. 6 ends this paper with an open questions
section where we discuss the main actual interrogation we are currently working on.

2. INSTRUMENTAL SETUP

This section details the instrumental setup and notations used in our simulations. As introduced in Sec. 1, our
algorithm targets the estimation of differential piston values from a PSF acquired using a 2x2 Shack-Hartmann
wavefront sensor (SH-WFS). To illustrate the method’s core principles, a simplified schematic of the optical setup
is presented in Fig. 1.

Figure 1a presents the entrance pupil of the ELT in its nominal configuration, segmented into six subsections
by the spiders supporting the secondary mirror. These subsections are referred to as petals and, following ESO
notation, numbered from 1 to 6. In addition, the SH-WFS axes, depicted as white straight lines, subdivide the
entrance pupil into four subpupils. We designate these subpupils as UL (Upper Left), UR (Upper Right), LL
(Lower Left), and LR (Lower Right) for clarity and simplicity.

In addition, the telescope’s tracking motion induces a relative rotation between the pupil and the SH-WFS
axes, as illustrated in Fig. 1b. We define this rotation angle, denoted by θ, as the angle formed between the
SH-WFS x-axis and the axis separating petals 1 and 2 of the pupil. In this specific case, for consistency with our
previous work,8 we define rotation angles to increase as they rotate in the clockwise direction. Due to symmetry,
analyzing only subpupils UR and UL for a rotation angle θ ∈ [0◦, 30◦] is sufficient to characterize the differential
piston effects. This approach reduces the number of differential piston values to be considered to one for the UR
sub-pupil (∆p3,2

) and two for the UL sub-pupil (∆p4,3
and ∆p5,4

).

Each subpupil generates a corresponding PSF, referred to as a sub-PSF, as shown in Fig. 1c. The PSFs exhibit
characteristic diffraction patterns that arise due to two primary factors: (1) the presence of the telescope’s spider
and (2) the square cropping of the entrance pupil. Figure 1c illustrates that when the pupil is rotated relative to
the SH-WFS axes, the PSFs of subpupils containing three petals (such as UL and LR in Fig. 1b) exhibit more
intricate diffraction patterns.

The six petals of the entrance pupil are susceptible to piston errors, which manifest as a uniform displacement
of an entire petal along the optical axis. These errors can arise from various sources, including atmospheric
turbulence, adaptive optics (AO) system itself, and mechanical or thermal effects. While a global piston shift
across the entire pupil does not degrade image quality, differential piston, also known as petaling, occurs when
individual petals exhibit different piston errors. This differential piston significantly impacts the final image
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Figure 1: (a) Initial pupil configuration. The petals are numbered using the ESO convention. (b) Pupil
configuration for a pupil rotation angle θ = 15◦. (c) and (d) Respective resulting sub-PSFs as measured by the
2× 2 SH-WFS.

quality. We define here the differential piston between petals i and j as the difference in their respective piston
values pi and pj thus yielding

∆pj,i
= pj − pi with i, j ∈ [1; 6], i ̸= j . (1)

3. SIMULATION ENVIRONMENT

In this section, we briefly describe the process used to create the sub-PSFs images as well as the parameters that
are used in our simulations.

3.1 Image generation

The simulation code, written in Python, relies on monochromatic Fourier optics for optical propagation. The tool
of aoSystems from the P3 library11 are employed to generate the petals of the ELT primary mirror. Assembled
together, these segments form the complete entrance pupil, as depicted in Fig. 2a. Each petal is then assigned
a random piston drawn from a predefined distribution resulting in the pupil shown in Fig. 2b. Subsequently,
atmospheric turbulence is simulated and applied to the pupil which gives the image presented in Fig. 2c. To
mimic the action of the SH-WFS, the pupil is subdivided into four subpupils. These subpupils are then zero-
padded to reach the desired final sampling as depicted in Fig. 2d. Finally, the sub-PSFs images are obtained
by computing the squared modulus of the Fourier transform of each subpupil’s complex amplitude. Figure 2e
shows the sub-PSF corresponding to the UR sub-pupil.
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Figure 2: (a) Entrance pupil function. The value is 1 inside the pupil and 0 outside. (b) Phase distribution for
piston only case. (c) Phase distribution for piston + atmospheric turbulence case. (d) . Phase distribution for
UR subpupil. (e) Resulting UR sub-PSF .

3.2 Parameters

In this section, we detail the list of the important parameters used in the simulation.

• array size: specifies the final dimensions of the sub-PSF arrays. It is consistently set to 96 throughout the
paper, resulting in sub-PSF images of size 96×96 px. The sub-PSF being Nyquist-sampled, this correspond
to 48× 48λ/D.

• rotation angle: the pupil rotation angle θ, given in degree. It verifies θ ∈ [0◦, 30◦], due to symmetry
reasons discussed in Sec 2.

• piston distribution: statistical distribution for individual pistons (currently supports uniform or normal
distributions). It is consistently set to the uniform distribution U (−π/2, π/2) throughout the paper, and
this choice is discussed in Sec. 3.4.

• psd: a PSD FITS file create with TIPTOP10 and containing: (1) an array representing the power spectral
density of the atmospheric turbulence, (2) pupil’s physical diameter, (3) wavelengths of the LGS, NGS and
science target and (4) the pixel scale.

3.3 Turbulence conditions

To simulate atmospheric turbulence, we use a power spectral density (PSD) profile obtained from the TIPTOP
library.10 Random samples are then drawn from this profile to generate the turbulence phase screens. Five
turbulence profiles have been generated for our simulations by varying three key TIPTOP parameters: (1) seeing
(i.e., turbulence strength), (2) zenith angle of the NGS (the further the NGS is from the science target the
higher the anisoplanetism effects), and (3) photon flux (lower signal-to-noise ratio for fainter sources). Table 1
summarizes the five turbulence profiles along with their corresponding Strehl ratios. The JQ0 and JQ00 profiles
represent unrealistic scenarios included for algorithmic validation and comparative purposes only. The JQ1,
JQ2, and JQ3 profiles correspond to scenarios representing good, intermediate, and bad atmospheric conditions,
respectively. Figure 3 presents the modulation transfer functions (MTF) for all the cases.
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Figure 3: Modulation Transfer Function (MTF) of the full pupil for the five turbulence profiles (solid lines) and
for the diffraction limited case (in dashed line).

Table 1: List and main characteristics of the datasets used in our simulations.

Name Description Seeing
(in ”)

NGS offset
(in ”)

Photon flux
(in ph/frame/subap.)

Strehl

JQ00 Unrealistic condition for compar-
ative purpose only

0.400 0 7000 ∼ 90%

JQ0 Unrealistic condition for compar-
ative purpose only

0.432 30 1500 ∼ 75%

JQ1 Good conditions scenario 0.432 70 1500 ∼ 50%

JQ2 Intermediate conditions scenario 0.568 100 250 ∼ 25%

JQ3 Bad conditions scenario 1.042 60 50 ∼ 10%

3.4 Piston distribution

This section focuses on the importance of a careful selection of the piston distribution and its consequences
on image formation. Like any WFS that directly estimate phase (i.e., not its derivative like a SH-WFS or a
Pyramid WFS), the 2π ambiguity represents a physical limitation to the amplitude of piston measurement. This
inherent limitation indeed restricts the sensor’s capture range to 2π. Several techniques exist to mitigate the
ambiguity12–16 and a detailed discussion is beyond the scope of this paper.Therefore, we restrict the differential
piston values to ∆p ∈ [−π, π] for this study.

To achieve this limitation on differential piston values, we must find a single piston distribution (i.e. pi, i ∈
[1, 6]) that produces the desired range when calculating the differential piston (i.e. the difference of two single
pistons, see Eq. 1). We tested two different distributions: (1) a uniform distribution and (2) a Gaussian dis-
tribution. We know that the distribution of the sum of two continuous random variables is the convolution of
their respective probability density function (PDF). Because both distributions (1) and (2) are symmetrical, the
difference of two random variables drawn from them also follows the convolution of their respective PDFs.

We present on Fig 4a the single piston PDF comprised of one uniform distribution U (−π/2, π/2) and several
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Figure 4: (a) Probability density functions (PDFs) of various single piston distributions. (b) Resulting PDFs
for the differential pistons. The color scheme in both panels corresponds for ease of comparison.

variation of zero-meaned Gaussian distributions N
(
0, σ2

)
. Figure 4b presents the respective PDFs for the

differential pistons. When single pistons follow a uniform distribution, the resulting differential pistons ∆p

exhibit a triangular distribution, denoted as T (−π, π). For the Gaussian distribution case, the resulting PDF
remains Gaussian but with a variance broadened by a factor of 2.

Our evaluation revealed imperceptible performance differences between the uniform distribution and the
Gaussian distribution with σ = 8π/32. Consequently, we opted for the uniform distribution due to the more
appealing shape of its sampling of the differential piston values. Despite careful control of the piston distribution
generation within the desired range, introducing turbulence to the entrance pupil may occasionally lead to values
exceeding these boundaries. We will address this scenario and its implications in Section 5.5.

The standard deviation of T (−π, π), giving the initial RMSE of our simulation, is given by

σp,0 =
π
√
6

6
(rad) =

λ
√
6

12
(m). (2)

This set the baseline level for our estimations. Using a wavelength of λ = 2.2µm in Sec. 5, the zero-point standard
deviation for piston thus verify

σp,0 ≃ 449 nm. (3)

3.5 Limit cases

In our previous publication,8 we demonstrated that the UR differential piston is easier to retrieve compared
to the two UL differential pistons. This can be attributed to two factors being: (1) the UL sub-pupil has two
differential values (∆p4,3 and ∆p5,4), making the disentanglement of their contributions to the sub-PSF more
complex and (2) when the pupil rotation angle approaches 30◦ (respectively 0◦) for UL1 (respectively UL2), the
surface area of one of the two petal contributing to the differential piston becomes negligible, leading to potential
estimation errors. Consequently, we restrict our investigation to pupil rotation angles between 0◦-26◦ and 4◦-30◦

for the UL1 and UL2 cases, respectively.

4. DEEP LEARNING

We detail in this section the composition of our datasets and the neural network architecture. Our simulations
use the DEEPLOOP9 deep learning environment to build and train our neural networks.
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Figure 5: Network architecture used to measure differential piston from a sub-PSF. The elements comprising
the network are, from left to right: (0) Input image. (1)(2)(3) Residual units. (4) Convolutional layer. (5) Flaten
layer. (6) Dense layers. (7) Differential piston value. (A) Convolution cut layer. (B) Identity cut layer.

4.1 Data

The datasets are generated following the steps presented in Sec.3 where the PSF sub-images are Nyquist-sampled.
These datasets contain images with random pupil rotation values between 0◦ and 30◦ (see Sec. 2). Following
common practice in machine learning, we divided the data into an 80/20 training/validation split. This resulted in
a training set of 300000 samples and a validation set of 60000 samples. In addition, a separate test set containing
90000 samples was established for evaluating model performance after the training phase is completed. These
samples are binned into groups of 1◦ width to later assess performance with respect to the pupil’s rotation angle.
This consist in 3000 sub-PSFs per 1◦ bin.

4.2 Neural networks

Our goal is to recover differential piston information from sub-PSF images. Due to the two-dimensional structure
of the input data, Convolutional Neural Networks (CNN) are particularly well-suited for this task. Building upon
our prior work,8 which investigated the application of both Visual Geometry Group Networks (VGGNets) and
Residual Neural Networks (ResNets) architectures, we opted for ResNets in this study. Their deeper architecture,
facilitated by skip connections and residual learning, allows them to learn more complex image features compared
to shallower networks like VGGNets. To limit network’s complexity, we opt for a lighter and simpler ResNet
architecture compared to our previous work.8 Future investigations will explore the potential benefits of more
expansive network architectures.

The architecture of the network is illustrated in Fig. 5. The entrance image is a 96 × 96 pixels sub-PSF
produced as described in Sec. 3.2. The first stage of the network consist of five residual units. Each residual unit
is composed of two consecutive convolutional layers with a 3× 3 kernel size. A bypass connection connecting the
input of the unit directly to its output allows the unit to learn from both the original input and the modified
features learned by the convolutional layers. This bypass connection can be of two types: either the identity (i.e.
the input is added directly to the output of the unit) or a convolutional layer with a 1 × 1 kernel size, called a
cut layer. At the end of the unit, a 2× 2 maxpooling operation (not represented on Fig. 5) reduce the dimension
of the input by a factor 2. The shape of the data are, in order of the residual units:

0. input - (96, 96, 1)

1. after layers 1a and 1b - (96, 96, 32)

2. after layers 2a and 2b - (48, 48, 64)

3. after layer 3 - (24, 24, 128)

Following the five residual units, a convolutional layer with a 3× 3 kernel size and a following 4× 4 max pooling
layer are applied. This configuration reduces the data dimensionality to:
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4. after convolutional layer 4 - (6, 6, 128)

A flatten layer and two dense layers complete the network. Adding the pupil rotation angle as input to the network
is critical for achieving robustness to its variations. While this information can be integrated at various places
within the model architecture, we decided to include it after the first dense layers’s output. This positioning allows
the rotation angle value to considerably influence network training, resulting in robustness against variations in
this parameter.

5. after flattening layer 5 - (4608, )

6. after dense layer 6a - (16 ⌢ θ = 17, ) and after dense layer 6b - (16, )

7. output - (1, )

In summary, the network architecture has 610913 trainable parameters.

To obtain the best possible performances, we train one network per differential piston/turbulence profile
combination (e.g. ∆p4,3

at JQ2, see Sec. 2 and Tab. 1). This approach results in 15 distinct cases to be
investigated (3 differential pistons values × 5 turbulence profiles). An hyper-paramereter search on the scheduler
defining the learning rate values is performed for each combination.

5. RESULTS

This section presents the results obtained by training our networks on realistic, AO-corrected turbulence condi-
tions. We recall in Sec 5.1 the metric we use to assess the performance of our algorithm and comment the results
in the following sections.

We begin with the study of the UR sub-pupil case. Section 5.2 presents the results obtained when training
the network with single-frame images as we did it in our previous work.8 These results latter indicated the
potential benefit of frame averaging to mitigate the turbulence effects and enhance the differential piston signal.
We therefore explores the gain in performance using averaged frames in Section 5.3.

5.1 Metrics

To estimate the performances of our networks, we use the root mean square error (RMSE), a widely used metric
for evaluating the performance of regression models. It is defined as

RMSE =

√√√√ N∑
k=0

(
∆̂k

pj,i
−∆k

pj,i

)2

, (4)

where ∆̂k
pj,i

is the estimated value of the k-th realization of differential piston ∆k
pj,i

and N stands for the number
of differential piston values in the considered set. This set can be composed of the differential piston measured
for either (1) all possible pupil rotation angles or (2) a specific subset of pupil rotation angles. In case (1), the
network’s global performance is measured while in case (2) the specific performance for a given angle is assessed.

A pupil plane metric, such as the Strehl Ratio (SR), could also provide complementary insights. SR can be
calculated to quantify the loss in image quality induced by a given differential piston distribution. It is expressed
in Ref. 3 as

SR =
1 + (n− 1)eσ

2
p

n
, (5)

where n = 6, the number of petals in our case and σ2
p is the differential piston variance over the pupil. This

formula provides an indication on the differential piston effect in the pupil plane in the case where no other
aberration is present. Table 2 compile the correspondence between SR decrease in percentage point (p.p.) and
differential piston variance for a couple of indicative values.
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Table 2: Indicative correspondence between differential piston RMSE and Strehl ratio.

Strehl decrease
(in percentage point)

Differential piston standard deviation
(in rad)

Differential piston standard deviation
(in nm at 2.2µm)

1 0.11 38

5 0.25 87

10 0.36 125

(a) (b)

Figure 6: (a) Scatter plot of estimated versus true differential piston for the five turbulence profiles. (b)
Differential piston RMSE (given in nm at λ = 2.2µm) as a function of pupil rotation angle for single-exposure
UR sub-PSF.

5.2 Result on single frame exposures for UR sub-pupils

Thanks to our previous work,8 we demonstrated that the network presented in Sec. 4.2 is able to retrieve
differential piston at a nanometer-level RMSE in presence of turbulence residuals (i.e. considering an ideal AO
system that corrects perfectly until the cutoff frequency). Following the same logic, we trained the network with
the new sub-PSF obtained using realistic turbulence phase screens from TIPTOP (see Sec. 3.3).

Figure 6 presents the results obtained in this configuration. Figure 6a shows the scatter plot of estimated
differential piston versus introduced differential piston while Fig. 6b shows the RMSE as a function of pupil
rotation angle. The five pre-defined turbulence profiles are assigned their respective colours from Fig. 3.

All curves from Fig. 6b exhibit a similar profile, characterized by a slight curvature at their extremities.
This curvature is due to the unbalanced distribution of the two petals area for angles close to 0◦ or 30◦. As
anticipated, the RMSE increases with stronger turbulence across all rotation angles. This behavior can be
attributed to the increasing speckle counts going along with worsening turbulence conditions. The speckles can
be seen as unwanted “noise” diluting the differential piston information. Across the three realistic turbulence
profiles (JQ1, JQ2, and JQ3), the mean RMSE ranges from approximately 50 nm to 150 nm, corresponding
to a SR decrease of roughly 2 p.p. for JQ1, 4 p.p. for JQ2 and 14 p.p. for JQ3. These SR variations are
presented assuming a system only subject to differential piston. The inclusion of additional turbulent phase
errors is expected to further modify these values. Moreover, working with realistic turbulence profiles means
that differential piston mode is inherently present within the phasescreens that are applied to the pupil. This
has a significant impact on the estimation of the telescope’s true differential piston and will necessitate careful
and more in depth consideration.
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(a) (b)

Figure 7: (a) Scatter plot of estimated versus true differential piston for the five turbulence profiles for 10-frames
averaged UR sub-PSFs. (b) Differential piston RMSE (given in nm at λ = 2.2µm) as a function of pupil rotation
angle for 10-frames averaged UR sub-PSFs. The y-axis differs from Figure 6b.

Our previous study demonstrated a RMSE of approximately 2 nm in the presence of residual turbulence alone
for the UR sub-pupil. Introducing AO residuals into the system therefore significantly degrades performance.
This degradation likely arises because AO residuals primarily affect low spatial frequencies, which are crucial for
differential piston retrieval and because the atmosphere inherently contains the differential piston mode that is
not yet taken into account in our simulations. A detailed discussion of this aspects is beyond the scope of this
work and will be presented in a future publication.

Following the evaluation of the network’s performance using single-frame inputs, we explore the potential
benefits of frame averaging to mitigate turbulence effects. This approach is investigated in the next section.

5.3 Results on averaged frames for UR sub-pupils

This section investigates the influence of frame averaging on network performance. We chose to create 10-frame
averaged images, balancing the averaging quality with manageable simulation times.

Figure 7 presents the results obtained in this averaging configuration. Figure 7a shows the scatter plot of
estimated differential piston versus introduced differential piston while Fig. 7b shows the RMSE as a function of
pupil rotation angle. The five pre-defined turbulence profiles are assigned their respective colours from Fig. 3.
The scale in Fig. 7b differs from Fig. 6b. The cases are now labelled JQxxA10, with xx ∈ [00, 0, 1, 2, 3] to denote
the 10-frames averaging.

As already observed in Section 5.2, the curves from Fig. 7b exhibit a slight curvature at their extremity
due to the unbalanced petal areas in these edge cases. The major information given by Fig. 7 is the significant
improvement in RMSE achieved by averaging only 10 uncorrelated frames for all the turbulence conditions. For
instance, the mean RMSE across all rotation angles for the JQ3 case reduces from ∼ 150 nm to ∼ 50 nm (2 p.p.
deacrease in SR) when using 10-frame averaging. This reduction represents a significant improvement achieved
with only averaging images.

As anticipated, this behavior arises because averaging multiple images enhances the differential piston signal
relative to the background speckle noise generated by the turbulence and cancels out the potential differential
piston that can be contained into the turbulent phase screens. This process effectively increases the signal-to-noise
ratio (SNR) for differential piston retrieval.
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(a) (b)

Figure 8: (a) Scatter plot of estimated versus true differential piston for the five turbulence profiles for 10-frames
averaged UL1 (top) and UL2 (bottom) sub-PSFs. (b) Differential piston RMSE (given in nm at λ = 2.2µm)
as a function of pupil rotation angle for 10-frames averaged UL1 (solid lines) and UL2 (dashed lines) sub-PSFs.
The y-axis scale is adopted from Fig. 7b to facilitate direct comparison.

Building upon these findings, a comprehensive investigation is ongoing to better understand the sub-PSF
behavior as a function of observing parameters, such as differential piston strength, turbulence profile or the
number of frames used for averaging. This investigation has the potential to reveal new insights into the petaling
phenomenon, potentially leading to novel solutions for its measurement and correction.

5.4 Results on averaged frames for UL sub-pupils

This section presents the results obtained for the UL sub-pupil case. As detailed in Sections 2 and 3.5, the UL
case is generally more challenging due to the requirement of estimating two differential piston values from a
single sub-PSF.

Figure 8 presents the results obtained in this configuration. Figure 8a shows the scatter plot of estimated
differential piston versus introduced differential piston for the UL1 case (top, ∆p4,3

) and for the UL2 case
(bottom, ∆p5,4

). Figure. 8b depicts the RMSE values for the UL1 case, represented by solid lines and the UL2
case, represented by dashed lines. As usual, the five pre-defined turbulence profiles are assigned their respective
colours from Fig. 3.

As discussed in Section 3.5, the accuracy of differential piston estimation by the networks lowers as the pupil
rotation angles approach the UL1 and UL2 limits (30◦ and 0◦, respectively). This trend is present in Figure 8b,
where the RMSE curves exhibit a visible increase as the rotation angle approaches their limit. The results
for UL sub-pupil reveal an unexpected asymmetry between the UL1 and UL2 cases. Contrary to our initial
expectation of similar network performance, the RMSE values for the UL2 case are consistently lower than those
for UL1. One potential explanation for this asymmetry could lie in the power distribution of the atmosphere
PSDs. As explained in Ref. 17, tomographic systems yield anisotropic PSDs, therefore creating an anisotropy in
the speckle field intensity in the focal plane. Consequently, the network exhibits a position-dependent sensitivity
to differential piston signal.∗ Considering the differential piston signature as signal and speckles as noise, regions
with higher speckle intensity present a lower signal-to-noise ratio, making it more challenging for the network

∗At the time, the PSD does not rotate along with the pupil, which does not reproduce an on-sky behaviour. We
believe that correcting this effect will remove the slopes that can be observed on Fig. 8b curves, resulting in flat curves
at distinct RMSE levels for UL1 and UL2.
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Figure 9: PSD radial mean of turbulence profiles (solid lines) presented in Sec. 3.3 and differential piston
aberration (dashed line). For differential piston, the mean PSD for ∆p ∈ [−π;π] is represented along with a ±1σ
interval.

to retrieve accurate differential piston values. Conversely, darker regions offer a higher SNR, leading to more
precise piston estimations.

5.5 Data selection

Figures 6b, 7b and 8b have been slightly modified to ensure clarity and avoid potential confusion of the reader.
The modifications concern edge cases related to introduced differential piston values close to ±π. The JQ3 case
on Fig. 6a illustrates this phenomenon where a differential piston value close to ±π can be misinterpreted by
the network to a value that ranges between −π and +π. This occurs because phase errors in monochromatic
light are 2π-periodic, and differential piston values close to ±π can be indistinguishable for the network. This
effect is more pronounced under high turbulence conditions, where the network is exposed to stronger turbulence
residuals, rendering it less robust to this phenomenon. Fortunately, this misinterpretation affects a negligible
fraction of the image data (estimated probability ∼ 3.10−5). As discussed in Section 3.4, some strategies exist
to correct this effect. All the results have been corrected from this effect except the JQ3 UR case presented on
Fig. 6a where the number of outliers is too important to be reasonably rectified.

6. OPEN QUESTIONS

This section contains a series of open questions that, while deserving further investigation, earn inclusion in this
publication. Their exploration stimulate critical thinking about the underlying principle governing the differential
piston phenomenon.

• Where should we look for the differential piston signal ?
Following the approach used in Ref. 18, we can compare the turbulence and differential piston PSDs
to identify locations in the focal plane where the signal-to-noise ratio (SNR, with the signal is defined
as the speckles created by differential piston and the noise is defined as the speckles originating from
the turbulence) is favorable for retrieving differential piston information within the turbulence speckles.
Figure 9 presents the PSD radial mean of turbulence (solid lines) and differential piston (dashed line). The
differential piston contribution is calculated as the mean PSD across all piston values (uniformly sampled
∆p from −π to +π). The light blue shaded area depicts a ±1σ interval, which visually represents the
range of variations of the differential piston PSD. Its value is minimal for differential pistons close to zero
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Figure 10: Ratio of differential piston to residual turbulence PSDs for the five turbulence profiles. The colorscale
is consistent across all plots.

and reaches its maximum near ±π. Figure 9 shows that the differential piston PSD consistently surpasses
the turbulence PSD at lower spatial frequencies. This observation suggests that in most cases, differential
piston can be estimated at this location with a favorable SNR.

Building upon this, we can extend the reasoning from the 1D radial mean to a 2D map. Figure 10 presents
this map where each pixel corresponds to the ratio between the differential piston and the turbulence PSDs.
The presented maps has been computed for the UR case at θ = 0◦. We see that for lower frequency, the
ratio is always greater than 1 for all the turbulence conditions, indicating that the estimation of differential
piston in this region should always be possible. Figure 10 additionally reveals regions along vertical and
−30◦ orientations that exhibit favorable ratios for piston estimation. However, these regions are far from
the PSF’s center (> 20λ/D) and while theoretically promising, their practical utility is limited by the
significantly lower light intensity at these locations, which would likely be exceeded by detector noise.

• What is the differential piston statistical distribution ?
The statistical distribution of differential piston across the pupil plane of the ELT remains an open question
in the current literature. As differential piston can originate from various sources, it is difficult to quantify
the level of aberrations that will be present in real observing conditions. While we decided to restrain the
piston values to [−π, π] in this paper, it would be important to know even a rough estimate of its amplitude
to put our study into perspective.

• How does the system performs when noise is added to the images ?
This study is based on noise-free simulations which is an ideal case. We plan to add detector noise in the
future to test the robustness of the network. As established in the first bullet point, the differential piston
signal is mainly located near the center of the PSF. Consequently, the photon count at this location will be
maximized. Anyway, an in-depth analysis is required to assess the performances of our network regarding
detector noise and is dedicated to a forthcoming publication.
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• How does the system performs in polychromatic light ?
We have assumed during this paper a monochromatic light, which is an ideal case. In a real-world scenario,
the light arriving at the SH-WFS will be polychromatic, potentially affecting the network’s performances as
the PSF will be blurred depending on the coherence length of the spectrum. While potentially lowering the
differential piston estimation performance, the broadening of the spectral band will benefit to the system
by increasing the number of photons collected by the SH-WFS detector.

7. CONCLUSION

Building upon our initial work,8 we defined in Sec. 2 and 3 a precise and controlled simulation environment for
differential piston estimation using images from a 2× 2 SH-WFS. To enhance the realism of our simulations and
better understand the actual phenomenon, we implemented the generation of realistic turbulence profiles using
the TIPTOP10 library. This transition resulted in a measured increase in the differential piston RMSE, presented
in Sec. 5, which reflects the added complexity of real-world scenarios. Despite this increase, the DL approach
still demonstrated promising performances, suggesting its potential for practical applications. We evaluated
performance under two scenarios: (1) using single-frame images, which achieved a RMSE lower than λ/15,
and (2) employing 10-frame averaged images, which yielded a RMSE lower than λ/50 for the more challenging
JQ3 turbulence condition. The error level reach with the latter result is promising. However, further testing
with uncorrelated turbulent phase screens is necessary to determine the number of frames needed to achieve
comparable performance on-sky.

In addition to evaluating performances, this study has raised, in Sec. 6, valuable insights into the differential
piston phenomenon. By analyzing the PSDs of turbulence and differential piston, we were able to identify
favorable locations within the pupil plane for piston estimation. These findings need to be refined but already
contribute to a deeper understanding of the interaction between turbulence and differential piston.
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