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ABSTRACT

Context. Filaments host star formation and are fundamental structures of galaxies. Their diversity, as observed in the interstellar
medium, from very low-density structures to very dense hubs, and their complex life cycles make their complete detection challenging
over this large diversity range.
Aims. Using 2D H2 column density images obtained as part of the Herschel Hi-GAL survey of the Galactic plane (Gp), we want to
detect, simultaneously and using a single model, filaments over a large range of column density and contrast over the whole Gp. In
particular, we target low-contrast and low-density structures that are particularly difficult to detect with classical algorithms.
Methods. The whole H2 column density image of the Gp was subdivided into individual patches of 32× 32 pixels. Following our
proof of concept study aimed at exploring the potential of supervised learning for the detection of filaments, we propose an innovative
supervised learning method based on adding information by encoding the position of these patches in the Gp. To allow the segmentation
of the whole Gp, we introduced a random procedure that preserves the balance within the model training and testing datasets over the
Gp plane. Four architectures and six models were tested and compared using different metrics.
Results. For the first time, a segmentation of the whole Gp has been obtained using supervised deep learning. A comparison of the
models based on metrics and astrophysical results shows that one of the architectures (PE-UNet-Latent), where the position encoding
was done in the latent space gives the best performance to detect filaments over the whole range of density and contrast observed in
the Gp. A normalized map of the whole Gp was also produced and reveals the highly filamentary structure of the Gp in all density
regimes. We successfully tested the generalization of our best model by applying it to the 2D 12CO COHRS molecular data obtained
on a 52.◦8 portion (in longitude) of the plane.
Conclusions. We demonstrate the interest of position encoding to allow the detection of filaments over the wide range of density and
contrast observed in the Gp. The produced maps (both normalized and segmented) offer a unique opportunity for follow-up studies
of the life cycle of Galactic filaments. The promising generalization possibility tested on a molecular dataset of the Gp opens new
opportunities for systematic detection of filamentary structures in the big data context available for the Gp.
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1. Introduction
The galactic interstellar medium (ISM) is structured in fila-
mentary molecular clouds that span a large range of properties
over a wide range of physical conditions (Dib et al. 2020; Soler
et al. 2022; Feng et al. 2024; Schisano et al. 2020). As revealed
by the results of the Herschel Gould Belt (André et al. 2010)
and the Herschel infrared Galactic Plane Survey (Hi-GAL)
(Molinari et al. 2010), the cold and warm ISM is organized in
a ubiquitous network of filaments in which star formation is
generally observed above a density threshold corresponding to
AV = 7 mag (André et al. 2014; Könyves et al. 2020). Galactic
filaments exhibit a large range of structures that depend on the
spatial resolution and the tracers used to observe them (Hacar
et al. 2023). They also present complex life cycles ranging from
⋆ Corresponding author; loris.berthelot@lis-lab.fr

the low-density cold ISM to the high-density medium where
stars form. During this life cycle, filaments are built from the
diffuse ISM, fragment, and fuel material to allow star formation.
All these phases of formation are widely studied in both
observations and simulations to fully describe the star formation
process (André et al. 2010; Molinari et al. 2010; Arzoumanian
et al. 2011; Hacar et al. 2018; Arzoumanian et al. 2019; Shimajiri
et al. 2019; Clarke et al. 2020; Priestley & Whitworth 2022;
Hacar et al. 2023; Pillsworth & Pudritz 2024, and references
therein). In particular, the way the filaments form and evolve in
the ISM is still debated (Hoemann et al. 2021; Hsieh et al. 2021;
Pineda et al. 2022; Feng et al. 2024). Part of this debate is linked
to the role of high-mass stars (M⋆ ≥ 8 M⊙) that preferentially
form at the junction of filaments called hubs (Kumar et al. 2020,
2022) and their associated ionized (H II) region that impact the
structure of the surrounding medium, modifying the filament
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structure and the future star formation therein (Peretto et al.
2012; Zavagno et al. 2020; Maity et al. 2023; Bešlić et al. 2024).

Because filaments exhibit both a wide range of shapes and
lengths and have a complex life-cycle (Pillsworth & Pudritz
2024), their global detection (using one method and the same
set of parameters at the same time) over a wide range of densi-
ties and contrasts is needed to fully understand the star formation
process. The key importance of detecting filaments over a wide
range of densities to understand their life cycle in the ISM
and the large quantity of data available on the Galactic plane
(Gp) led to the natural development of many filament extraction
algorithms used both for numerical simulations and for obser-
vational data. These methods can be divided into four main
categories: Some approaches concentrate on a local examination
of the structures, relying on local derivatives at the level of indi-
vidual pixels. In contrast, alternative methods take a non-local
approach, investigating a larger surrounding zone for each pixel
to identify characteristic spatial scales that define the filament.
The third category of techniques advocates for a comprehen-
sive analysis of the entire map, employing decomposition at a
multi-scale level. Lately, statistical methods supported by super-
vised machine learning have been proposed to extract filaments
based on existing catalogues to overcome the issues stated above.
Descriptions of methods within these four categories are given
in Section 2.

While the first approaches are radically different, they share
the common feature that a single setting of the parameters does
not allow a complete filament extraction over the large range of
density and contrast values observed in the data. A close visual
inspection of 2D images and 3D (position, position, velocity)
spectral data cubes shows that some filaments are not detected by
state-of-the-art algorithms, especially low-contrast and/or low-
density filaments. This means that it is very difficult, in particular
for large surveys of the Gp, to deliver a complete catalogue that
is as unbiased as possible of the filaments present in the data.
Another limitation of these algorithms comes from their compu-
tation time, which can make some of them too expensive to envi-
sion a complete threshold and extraction parameter optimization.
Because the multi-wavelength information available on the Gp
on all spatial scales is so rich, proposing another way of extract-
ing filaments might allow a leap forward for an unbiased census
of filaments present in the data. Machine learning, through neu-
ral networks, is a new way to explore filament detection with no
hyper-parameters, at low cost, given an already-established fila-
ment catalogue (supervised learning being the most widespread
and simple learning strategy). Facing the difficulty of detecting
filaments over the large range of column density (ranging from
1020 to 1023 cm−2) and contrast (column density ratio between
filaments and background) observed in the Gp (Schisano et al.
2020), using a single model and a single set of parameters,
we propose a novel approach that combines supervised deep
learning with an innovative data distribution strategy. Capital-
izing on our proof-of-concept study that explored the interest of
supervised deep learning for the detection of filaments (Zavagno
et al. 2023), we also use here the whole column density image of
the Gp obtained from the Hi-GAL dataset (Molinari et al. 2016).
As explained in Zavagno et al. (2023, Section 2.2), this image
and its associated masks (all with an original size of 150 000 ×
2000 pixels) are subdivided into individual patches of 32 ×
32 pixels (the minimum size accepted by the UNet architecture
and chosen to preserve the structure of the smallest filaments;
see Zavagno et al. 2023, Section 2.2) that are randomly
distributed along the longitude axis for the learning stage,
using a random distribution procedure that we introduce here.

Moreover, based on the observed distribution of the filaments
in the Gp (Schisano et al. 2020), we propose a new UNet-based
architecture called Position-Encoding-UNet (PE-UNet) that,
adding the information about the position of the patch within
the Gp, significantly improves the state-of-the-art detection of
filaments. We tested several architectures and compare their
performance using both machine learning metrics and their
results on the detection of filaments using astrophysical data.
We also explore the generalization capability of our best model
and discuss its implication for the study of filaments in the Gp.

The structure of the paper is as follows. Section 2 gives
an overview of filament detection methods, while Section 3
briefly presents the machine learning concepts used for this
work. Section 4 introduces the Hi-GAL dataset used, Section 5
provides details about the random data distribution strategy
employed for segmenting the entire Gp and introduces the
position-encoding (PE-UNet) architecture. Section 6 describes
our experimental settings (metrics, machine learning environ-
ment), Section 7 presents the results from the machine learning
and the astrophysics standpoint, and are discussed in Section 8.
The main results and perspective of this work are summarized in
Section 9.

2. Overview of filament detection methods

Local techniques usually involve the computation of either
the gradient (first-order derivatives) as demonstrated by Soler
et al. (2013) and Planck Collaboration Int. XXXII (2016), or
the Hessian matrix (second-order derivatives) as shown in
works by Polychroni et al. (2013), Schisano et al. (2014), and
Planck Collaboration Int. XXXII (2016) at each pixel. The goal
of first-order derivatives is to determine the orientations of
elongated structures from statistical analyses which will result
in filaments, following the approaches of Soler et al. (2013)
and Planck Collaboration Int. XXXII (2016). Alternatively,
the method proposed by Schisano et al. (2014) is based on the
thresholding of the eigenvalues of the Hessian matrix that leads
to the identification of 2D regions where the emission locally
resembles a cylindrical filament. The method has been applied
to Benedettini et al. (2015); Pezzuto et al. (2021); Fiorellino et al.
(2021). Some methods focus on extracting filament skeletons
by connecting adjacent pixels along the crests of the (intensity
or column density) distribution. For example, the DisPerSe
method, initially designed for recovering filament skeletons
in cosmic web maps by Sousbie (2011), has been effectively
applied to Herschel column density maps (Arzoumanian et al.
2011, 2019; Peretto et al. 2012; Palmeirim et al. 2013) and
13CO intensity maps (Panopoulou et al. 2014). Different from
DisPerSe (Sousbie 2011), CRISPy (Chen et al. 2020) performs
filament detection thanks to ridge estimation (Chen et al. 2014,
2015) and has been used to analyse the velocity structure of the
long and high-mass star forming NGC 6334 filamentary cloud
(Arzoumanian et al. 2022). A drawback of the local approach
is its difficulty in detecting faint structures such as striations or
low-contrast filaments.

The non-local category is mainly composed of template-
matching algorithms (Juvela 2016) that search for one or several
specific and user-defined morphologies building a probability
map to find such a structure. Another effective approach is the
Rolling Hough Transform (RHT) method by Clark et al.
(2014), which calculates an estimator of the linearity level of
structures in the vicinity of a pixel at a given scale, utilizing the
Hough transform. This method has been extensively applied in
various studies involving H I data, Herschel, and Planck maps
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(Clark et al. 2015; Clark & Hensley 2019; Malinen et al. 2016;
Panopoulou et al. 2016; Alina et al. 2019). filfinder (Koch
& Rosolowsky 2015) extracts filament skeletons by first per-
forming spatial filtering at a specific scale, covering a dynamic
range broad enough to encompass striations. Extending the RHT
algorithm, Carrière et al. (2022b,a) proposed FilDReaMS which
overcomes RHT limitations by discretizing the spatial space
through a first pattern-matching step. The preferred orientation
is then chosen by performing a local maxima search and compar-
ing it to a random distribution rather than an arbitrary threshold
as in RHT.

Global approaches provide a comprehensive analysis across
multiple scales for a given field. The getfilaments technique,
introduced by Men’shchikov (2013), employs statistical tools and
morphological filtering to extract a filament network while mit-
igating background noise. It also identifies point sources and
supports a multi-wavelength analysis. While this method is thor-
ough, it necessitates fine-tuning and supplementary tools for
extracting filament orientations and scales. It has been success-
fully applied to Herschel maps in studies by Cox et al. (2016);
Rivera-Ingraham et al. (2016, 2017). Men’shchikov (2021) pro-
posed an upgraded version of getfilaments, namely getsf
which combines sources and filaments extraction for better
results. Following Men’shchikov (2013), getsf performs source,
filament and background separation simultaneously for better
results (sources and filaments are closely related) based on
multi-wavelength analysis. It has been successfully applied in
Motte et al. (2022); Pouteau et al. (2022); Kumar et al. (2022);
Xu et al. (2023b). Alternatively, Salji et al. (2015a,b) used the
Frangi filter (Frangi et al. 1998) to JCMT continuum images
to extract filaments. The Frangi filter is a method that allows
multi-scale identification of filaments based on the detection of
ridges and it adopts the analysis of the Hessian matrix. On the
other hand, wavelet-based methods by Robitaille et al. (2019);
Ossenkopf-Okada & Stepanov (2019) leverage an anisotropic
wavelet analysis to extract an entire filament network by scruti-
nizing map fluctuations across spatial scales. This approach may
overcome inherent biases associated with commonly used meth-
ods (Panopoulou et al. 2017) and remains relatively efficient.
Nevertheless, additional steps are required to determine filament
orientations. Despite its multi-scale nature, the log space scal-
ing inherent in wavelet analysis results in decreased resolution at
larger spatial scales.

Lastly, statistical methods, mainly based on machine learn-
ing, have been used in Alina et al. (2022); Zavagno et al. (2023);
Xu et al. (2023a) showing promising results in terms of compu-
tation time and easier to tune than other existing methods. Both
works used UNet-like (Ronneberger et al. 2015) architecture in
a supervised manner to perform the filament mask extraction
through the semantic segmentation task, where the goal is to
classify each pixel of a given image with labels (Fu & Mui 1981,
for a review).

3. Brief overview of machine learning concepts

In this section, we introduce the key concept of the machine
learning approach used, centred around semantic segmentation.
Semantic segmentation consists of associating one label (or cat-
egory) with each pixel of an input image. It is a well-studied
task in the computer vision field, with many applications, for
instance in the medical domain (Thoma 2016; Huang et al. 2022;
Asgari Taghanaki et al. 2021), to automatically detect organs
or tumors in medical images and videos, and more recently in
astrophysics with a few recent applications on galaxies such as

presented in Zhu et al. (2019); Hausen & Robertson (2020);
Bianco et al. (2021); Bekki (2021). Filament detection has also
been addressed as a segmentation task in Schisano et al. (2014,
2020); Clark et al. (2014); Carrière et al. (2022b,a); Alina et al.
(2022); Zavagno et al. (2023) works with or without machine
learning. Today, semantic segmentation is systematically tack-
led with deep learning models (Goodfellow et al. 2016), mainly
with Convolution Neural Network (CNN) (LeCun et al. 1989;
Krizhevsky et al. 2017; He et al. 2016) and most often with
what is called UNet architectures (Ronneberger et al. 2015), the
current state-of-the-art models for this task.

The UNet architecture is a neural network with an
autoencoder-like structure, whose output has the same shape as
its input and whose inner hidden layer is of much lower dimen-
sion than the input (see Figure 1). While an autoencoder is learnt
to reconstruct its input at its output while going through a bottle-
neck (a compressed representation of its input which is computed
in its hidden layer), a UNet is learnt to output the segmentation
image of the input image. The UNet is a rather standard deep
autoencoder (i.e. an autoencoder with many layers) that includes
a series of convolution and pooling layers in the encoder, up to
the most compressed representation of the input, and a series of
convolution and transpose convolution layers in the decoder (see
Figure 1). The specificity of UNet resides in skip connections
that connect intermediate layers of the encoder to correspond-
ing layers in the decoder. The skip connections allow multi-scale
processing of the input and facilitate the flow of detailed spa-
tial information from the encoding to the decoding stage, which
facilitates precise localization and segmentation. The final layer
of the UNet architecture usually consists of a 1 × 1 convolution.

Countless variations of UNet have been proposed for seman-
tic segmentation, particularly within the medical domain. We
mention only a few below. Attention UNets (Oktay et al. 2018)
made use of attention mechanisms (Jetley et al. 2018) to selec-
tively emphasize informative regions in the feature maps. By
focusing on relevant features, attention UNet achieves better
segmentation performance, especially in scenarios with com-
plex backgrounds. Residual UNets were a rather straightforward
extension of UNets (Zhang et al. 2018) exploiting residual
connections as popularized in ResNets (He et al. 2016). This
variant enhances gradient flow during training and facilitates
the training of deeper networks, leading to improved segmenta-
tion accuracy. Besides, UNet3+ (Huang et al. 2020) extended the
capabilities of the original UNet architecture by introducing the
Full-Scale Connected path, hierarchical attention mechanisms,
and multi-level feature fusion, thereby enhancing its perfor-
mance in medical image segmentation tasks. This variant is
particularly well suited for scenarios where precise delineation of
structures and accurate localization of abnormalities are crucial,
such as in medical diagnosis and treatment planning. Finally,
DenseUNet (Bui et al. 2019) integrates dense blocks, as pro-
posed in DenseNet architectures (Jégou et al. 2017), into the
UNet framework, where dense blocks encourage feature reuse
and facilitate gradient flow throughout the network, leading to
improved segmentation performance.

In our work we chose to compare our PE-UNet (described
in Section 5.2) to a few baselines: the standard and original
UNet (Ronneberger et al. 2015) which remains a reference
model for semantic segmentation; the UNet++ (Zhou et al.
2019) which constitutes the state-of-the-art architecture on the
Hi-GAL column density (NH2 ) dataset (Zavagno et al. 2023)
and the SwinUNet (Cao et al. 2023) which recently took over
state-of-the-art performance in the image medical field. We
briefly discuss the two latter models.
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Fig. 1. Simplified UNet architecture (Ronneberger et al. 2015). The complete architecture is composed of 5 UNet blocks (here only three are
represented). A UNet block is composed of two convolutions 3 × 3 and Relu activation followed by a max pooling layer for the encoding part
and one up-convolution layer followed by two convolutions 3 × 3 and Relu activation for the decoding part. Skip connections correspond to the
concatenation operation and are represented by dashed lines. With our implementation (five blocks), we obtain an output of size 2 × 2 × 1024 after
the bottleneck given an image of size 32 × 32 × 1. The input image is represented on the left, while the output is shown on the right.

The UNet++ (Zhou et al. 2019) model is based on the origi-
nal UNet architecture where skip connections have been replaced
with a series of nested dense skip pathways to improve the
multi-scale performance of the network, i.e. to better take into
account details captured in high-resolution layers for the final
segmentation. It usually performs well in the case of small
objects.

Swin-UNet (Cao et al. 2023) combines the UNet architec-
ture with the Swin Transformer block (Liu et al. 2021), it is the
first fully transformer-based UNet. The Swin Transformer block
is based on a shifted window multi-head self-attention mod-
ule (replacing the traditional multi-head self-attention module)
to gather context information between neighbouring patches.
Transformers and self-attention layers have revolutionized the
field of Natural Language Processing and spread to computer
Vision (Dosovitskiy et al. 2020) and are a new powerful brick to
build modern deep learning architectures. The Swin-UNet model
is composed of a traditional encoder, a bottleneck, and a decoder,
all of these are based on the Swin Transformer block (Liu et al.
2021). It achieves state-of-the-art performance on the Synapse
dataset1.

4. Dataset

4.1. Data

The Hi-GAL survey of the Gp (Molinari et al. 2010) is a pho-
tometric survey performed by the Herschel Space Observatory
(Pilbratt et al. 2010) in five photometric bands from 70 to
500 µm. After calibration, NH2 and dust temperature maps are
computed from the photometric images. To obtain the NH2 and
dust temperature maps, Herschel photometric data are convolved
to the 500µm resolution (36′′) and a pixel-by-pixel fitting by
a single temperature grey body is done (the complete pipeline
description can be found in Elia et al. (2013) and Schisano et al.
(2020)). It results in 37 mosaics, with an overlap over its two
neighbours of ∼2.2◦ (with a pixel size of 11.5′′), covering the

1 https://www.synapse.org/#!Synapse:syn3193805/wiki/
217789

entirety of the Gp. When merging the mosaics all together with
the reproject module from Astropy Collaboration (2022), the
whole Gp image is contained in an image of 1800× 114 000 pix-
els. Schisano et al. (2020) adopted simple criteria of thresholding
the minimum eigenvalue identifying all the regions where there
is a quick variation of the emission, then introduced selection cri-
teria based on the shape of the extracted region to identify among
all the features the one that resembles a filamentary morphol-
ogy. Their work resulted in the publication of the first catalogue,
composed of 32 059 filaments over the entire Gp.

4.2. Labelling strategy

We rely on data which have been labelled by Schisano et al.
(2020). From the beginning, we know that this labelling is not
complete, as some filaments are not detected, hence, starting
from a two-class labelling, there would exist pixels that are
wrongly labelled as background. To avoid training our models
on partially wrongly labelled data, drawing from the methodol-
ogy outlined in the work of Zavagno et al. (2023), we classify
pixels into three distinct categories: filament, background and
unknown:
1. Filament pixels are pixels identified as such according to the

list of filament published by Schisano et al. (2020).
2. Background pixels are defined through a hand-crafted

thresholding method, mosaic by mosaic. We define a thresh-
old on the column density value for each mosaic such
that every pixel below the threshold is not with very high
confidence a filament.

3. Pixels that do not fall into the two categories defined above
are considered as unknown pixels, in, particular no supervi-
sion and model evaluation is done on these pixels.

When training and evaluating models we rely on the available
supervision for known (background and filament) pixels only, no
supervision is used for unknown pixels but all pixels are used as
input to the models (more details can be found in Appendix C).
By defining both background and filament classes, we prevent
the neural networks from overpredicting pixels as filaments. In
fact, predicting the filament class for a background pixel will
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increase the training error (loss we are trying to minimize) and
decrease the performance metrics. During training, the target
associated with filament is 1 and 0 for the background. By adopt-
ing the above labelling strategy, we obtain a balanced training
dataset (about 45% of labelled pixels are labelled as filaments
and 55% as background).

4.3. Pre-processing and normalization

In our case, and unlike the usual machine learning setting, we do
not get a large dataset of images to learn a model. We only get
a single, large, image, the H2 column density of the Gp, whose
labelling (filament versus background) is only partially known;
in other words part of the pixels are not labelled. We aim to learn
models from this Gp’s labelling to enable accurate prediction
of pixels’ labels over the full Gp image. To achieve this goal,
we employ a patch-based learning and inference strategy. This
entails the operation of the models we learn on single patches.
Learning and inference are conducted on small single patches
(of size 32 × 32 pixels, covering 0.1′, see Appendix A.1 for a
detailed description). In the following, we refer to such patches
as samples, learning and inference will be performed on different
sets of samples. After learning, to obtain the segmentation over
the entire Gp, we use many predictions over overlapping patches,
which are aggregated as explained in Appendix E.

Following Zavagno et al. (2023), we applied a local min-
max normalization to set pixel values between 0 and 1 within
each patch. It is a local minimization as the min-max normal-
ization is performed independently for every patch. This results
in removing part of the local background associated with each
patch, resulting in removing some variability in the data and
easing the learning process.

5. Methods

We first detail the methodology we follow to perform prediction
over the entire Gp with machine learning models. Then we detail
the models that we investigate.

5.1. Methodology

5.1.1. Prediction over the full Gp

To infer prediction over the entire Gp, we need to design a spe-
cific procedure to divide the full Gp’s patches into a training set
and a test set multiple times so that gathering the predictions of
all learnt models on their corresponding test sets yields a predic-
tion over the full Gp. Of course, there should not be any overlap
between the training and the test set for each partitioning of the
full Gp. In practice, we partition the Gp into k equally sized non-
overlapping areas (see Figure A.1 in Appendix A). Second, we
learn k models, each of which is learnt on a training set that con-
sists of patches in all areas but one and is tested on the samples
in the remaining area.

Moreover, partitioning the Gp into k areas or subsets should
be done carefully to ensure the representativeness of samples
in every area, like stratified k-fold (He & Ma 2013) ensures a
balanced representation of classes in traditional machine learn-
ing classification tasks. In our domain, we know that patch (and
filament) properties vary within the Gp, primarily along the lon-
gitude axis. The longitude axis shows a larger range with a large
background variation along it. On the other hand, the Hi-GAL
observations cover a narrow region confined to the Gp mak-
ing sampling along the latitude axis less relevant. Therefore,

we designed a specific random procedure to ensure a balanced
distribution of patch longitude in every area while the lati-
tude sampling is left fully random. The procedure is detailed in
Appendix A.

5.1.2. Model selection

When using a specific neural architecture (e.g. UNet, Unet++)
one needs to tune what is known as hyperparameters, such as the
number of hidden layers, the size of hidden layers, the learning
rate of the gradient descent optimizer. These hyperparameters
are usually set by trial and error by learning the model for various
combinations of the hyperparameters, the best combination is
selected from the performance on validation data that were not
used for training the models.

We used such a model selection strategy, which we detail
here; we note that it is used as the basis for statistically com-
paring the model’s performance. As we are usually interested
in comparing different neural architectures we perform model
selection for each architecture to get the best hyperparameters
combination for each architecture. When learning k models on k
(training set and test set) pairs we further divide the training set
into a training set and a validation set, where we use the training
set to learn models with various hyperparameter combinations,
and we select the best model (i.e. best combination of hyper-
parameters) as the one that yields the best performance on the
validation set. We then compute the performance and predictions
of this selected model on the test set. Moreover, we exploit the
series of k test performance to compare pairs of models using
paired t-tests (Yuen & Dixon 1973).

5.2. PE-UNet

We detail here the UNet architectures that we propose for the
task. All our architectures exploit a position encoding strategy,
meaning the actual position of an input patch is provided as
an additional input to the neural network. We first motivate
this strategy then we discuss a few ways of implementing it in
PE-UNet (Position Encoding UNet).

5.2.1. Motivation

While filaments are widespread in the Milky Way, their distri-
bution along the Gp is not uniform, as highlighted in Schisano
et al. (2020), forming a relatively symmetrical distribution along
both the longitude and latitude axes (Schisano et al. 2020, see
also Figure 2). Moreover, using both numerical simulations and
observations, it is well accepted that filaments possess intrinsic
properties such as orientation, shape, contrast ratio, and intensity
directly (Hacar et al. 2023, and references therein). This indi-
cates that filament detection on a patch should benefit from the
knowledge of the position of this patch.

One may wonder if the position of a patch is actually
included, up to some extent, in the patch itself (i.e. may be
inferred from the patch itself). A first experiment confirms that
the position of a patch may indeed be predicted from it (see
Appendix B for more details). Hence filament detection as per-
formed by a standard UNet could be informed by the position
of the patch, if this turned out to be useful in the learning pro-
cess. While this could indicate that using patch position as an
additional input might be irrelevant, another experimental study
shows that the position information is actually not exploited
in a learnt UNet and the position information vanishes in the
internal representations of a patch computed by a UNet in its
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Fig. 2. Filament distribution along the longitude (top) and latitude
(bottom) axis of the Galactic plane, from the catalogue of candidate fila-
ments published in Schisano et al. (2020). The Galactic centre is located
at (0°, 0°) (for the longitude, 0° corresponds to 360°). The bandwidth
used to compute histograms is 1000 pixels for longitude and 50 for lati-
tude.

intermediate layers, so that its output is computed regardless of
the position of the input patch (see Appendix B for more details).
We hypothesize that this may come from the weak and noisy
information the position brings, making this signal ignored in
the learning process of the model.

While the patch position information is associated with
each patch, UNet models lose this information during filament
segmentation training. However, it is known that the Galactic
position (associated with specific physical conditions such as
density, turbulence and the intensity of the magnetic field, Hacar
et al. 2023) influences filament properties and should help for
filament detection. In order to ease and favour the use of patch
position during the training process, we propose to input it into
UNet models. The possible impact of filament’s location in the
Gp on filament’s properties motivated us to add the position
information to be explicitly present in the internal representation
of the model as a way to help optimize the use of this infor-
mation, if relevant enough. We detail our proposal in the next
subsection.

5.2.2. Position Encoding UNets

Position Encoding UNets make use of the position as an addi-
tional input. One may integrate an additional input such as the
position encoding p (considering first that p ∈ R) to a convo-
lutional layer anywhere in the UNet by concatenating a new
channel to the regular input channels of this convolutional layer,
where the new channel is filled with the position encoding p (see
Fig. 3 for illustration). Alternatively, if the position is encoded
into two features (p ∈ R2) as in our experiments, where the
position is encoded as a (longitude, latitude) pair, one needs to
concatenate two new channels, each one being filled with each
of the two features.

While the position may be added at the input of the neural
network, other choices may be made that correspond to different
assumptions on how the position information may and should
modify the filament detection decision. We investigated three
alternatives which differ by the stage where the position infor-
mation is added, either as an additional input, at the input of the
model or in the middle hidden layer, or as a thresholding input
(see Figure 4).

Fig. 3. Concatenation operation. We add position information as two
additional channels or maps to the existing one already through a con-
catenation operation. The existing channels or maps can be either the
density input or the results from a convolution layer (h and w being the
channel or map size). We fill a h × w matrix with the position encod-
ing pl.

The most straightforward approach to add the position as
input to the UNet consists of inputting the position as addi-
tional channels or maps at the input to the model, to the first
convolutional layer (alternative 1, referred to as PE-UNet-I
for PE-UNet-Input). This approach facilitates handling complex
interdependencies between the patch itself and its position. Yet,
one possible weakness of the approach is related to our pre-
vious observation (see Section 5.2.1) that a learnt UNet does
not exploit the patch position: it is not clear whether the posi-
tion information is strong enough for the optimization to rely
on it. To overcome this difficulty we explore a second solution
by inputting the position as additional channels to the first con-
volution layer of the decoder part of the UNet (alternative 2,
namely PE-UNet-L for PE-UNet-Latent). Doing so could ease
the use of this information by the model. In both cases it is pos-
sible for the UNet to take into account complex relationships
between the patch and its position, for instance, the depen-
dency between the orientation of a filament and the position
of the patch it comes from. A last approach (alternative 3, in
the following referred to as PE-UNet-D for PE-UNet-Decision)
consists of inputting the position encoding before the last (deci-
sion) layer. We call this strategy a thresholding approach since
this implementation makes that the output of the model FW (x)
may be decomposed in two terms as FW (x) = FUnet

W (x) + HW (p)
where the first term is computed by the UNet component of the
model and depends on the input patch x but not on its posi-
tion and the second term HW (p) depends on the position of
the patch only, p. Formulating computation this way, one sees
that the decision of labelling a pixel as filament resumes to
FW (x) ≥ 0.5 ⇔ FUnet

W (x) ≥ 0.5 − HW (p). In other words, such
a PE-UNet resumes to a UNet whose decision threshold is a
function of the position, independently of the input patch. Of
course, for such an implementation, the model cannot handle any
relationship between the patch and its position.

The relative behaviour of the three strategies described
above may help in getting insights into the validity of common
hypotheses in the field (e.g. the orientation of filaments depends
on their position). We note that we encoded both the longitude
and the latitude coordinates of the position. To align with the
results obtained by Schisano et al. (2020) and to facilitate neu-
ral network training alignment between, we propose to encode
the position as a symmetrical function, with the centre of the Gp
serving as the symmetrical centre. Furthermore, we ensure that
the position encoding of a patch located at 360° corresponds to
that of a patch located at 0° for longitude, to maintain circularity
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Fig. 4. Position Encoding UNet architecture. The model consists of a UNet architecture with the patch position as an additional input. Three
alternatives of PE-UNet have been explored, Input (in orange), where we input the position as two additional channels before the first layer; Latent
(in green), where we input the position as two additional features after the bottleneck; Decision (in red), where we input the position as two
additional features before the last convolution. In our experiment, the PE-UNets are composed of five UNet blocks reducing the dimension to
2 × 2 × 1024 at the bottleneck level given a patch of size 32 × 32 × 1.

in our data. The position is encoded by the following function:
pl =

|l−lre f |

lrange
where lre f stands for the centre of the Galaxy is (180°

for longitude and 0° for latitude) and lrange stands for the Gp cov-
erage (360° for longitude and approximately 6° for latitude). l
stands for both latitude and longitude. We note that, due to the
Galaxy’s shape, real data might differ from the symmetry we
adopt here. For example, two peaks are observed in the distri-
bution of filaments in the Gp, one related to the Carina complex
(l ≃ 280°) and one to the Cygnus system (l ≃80°) and on the third
Galactic quadrant there is a lack of filamentary structures in the
inter-arm region located between l ≃ 270–278° (Schisano et al.
2020, see their Fig. 2). Therefore some caveats may be associated
with the symmetrical assumption we adopt here. However, even
if the symmetrical property we adopt for the distribution of fila-
ment in the Gp might suffer some local departures, as mentioned
above, we point out that, for machine learning, continuity and
alignment between annotations and the features input are needed.
Suggesting our neural network to learn a non-symmetrical spa-
tial distribution while the labelling is showing every sign of a
symmetrical one might be counter-productive during the opti-
mization steps of neural network learning. On the other hand,
one could try to learn directly filament segmentation given the
filament spatial distribution under the form of constraint (neural
network could learn filament segmentation while the filament
spatial distribution respects a given one). But in order to do
so, the distribution has to be known and explicitly expressed in
the optimization process which is currently not the case for the
filament distribution.

6. Experimental study

6.1. Models optimization

The PE-UNet and all other neural architectures investigated here
have been developed using Python 3.11.6 and Pytorch 2.0.1. We
trained all models on Nvidia a40 GPU with 48GB VRAM with
a batch size of 256 during a maximum of 100 epochs. An early
stopping strategy was used: training was stopped if there was no
loss improvement greater than 1× 10−4 compared to the best loss

during the last 10 epochs on the validation dataset. The ADAM
scheme (Kingma & Ba 2014) was used to optimize the Binary
Cross Entropy (BCE) loss with different initial learning rates
(between 5 × 10−3 and 5 × 10−5, the initial learning rate being
our only hyper-parameter) with the learning rate being divided
by 10 every 10 epochs (Vojtekova et al. 2021). Both flips and
rotations were used for data augmentation.

6.2. Metrics

In this section, we report a few metrics to quantitatively assess
the performance of the models. Segmentation models output
continuous values ranging from 0 to 1, representing the confi-
dence of each pixel belonging to class 1 (filament class in our
case). These values are binarized according to a threshold to
yield a classification decision. When the models are learned to
output target values {0, 1} for the two classes, as it is the case in
our experiments (target filament class = 1 and target background
class = 0), it is a common practice in machine learning to set the
threshold at 0.5 (when learning data are balanced) at test time
and classify as filament every pixel whose output is above 0.5
and as background all remaining pixels. One uses measures that
integrate all possible threshold values to get a deeper idea of
the behaviour of the classifier. This is particularly useful when
the classes do not play a symmetric role (e.g. medical diagno-
sis, information retrieval) or when the true objective is that the
score of samples from class 1 should be higher than the scores
of samples from class 0, whatever the threshold.

We detail below the computation of the metrics we report
in our experiments. We used two metrics that are threshold-
dependent, the Dice Similarity Coefficient (Wang et al. 2004)
which is a widely used measure for semantic segmentation and
the MSSIM, which has been introduced as a “Goodness-of-fit
Measure” for filament detection by Green et al. (2017). We used
a threshold of 0.5 to compute these metrics as it is consistent with
the balance of our learning dataset (about 45% of pixels labelled
as filaments and 55% as background). Additionally, we report
mean Average Precision and Area Under the Curve Receiver
Operating Characteristic at the pixel level, which are common
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in classification tasks, where both measures are averages over
the threshold value.

DSC. The DSC corresponds to the f1 score at the pixel
level. It gives more reliable information than the usual accuracy,
especially in the presence of unbalanced data. It is defined as:

DSC =
2TP

2TP + FP + FN
(1)

where T P stands for true positive (pixel labelled as filament and
classified as such), FP stands for false positive (pixel labelled
as background but classified as filament) and FN stands for false
negative (pixel labelled as filament but classified as background).
The DSC metric ranges from 0 to 1, and equals 1 when every
pixel is correctly classified.

AUC ROC. The ROC curve is built from the classification
performance of a model for any classification thresholds. It is
given by plotting the true positive rate (also called Recall) against
the false positive rate for each detection threshold:

T PR =
T P

T P + FN
(2)

FPR =
FP

FP + T N
. (3)

The AUC ROC summarizes the ROC curve into a single value by
computing the area under the ROC curve. The AUC ROC value
corresponds to the probability that the model ranks (in terms of
output value) a random positive example (filament) higher than a
random negative example (background). The score ranges from
0 to 1 with 1 meaning having a perfect separation (in terms of
network output) between filament and background pixels.

mAP. The Average Precision summarizes the Precision-
Recall curve (which shows the trade-off between correctly clas-
sified positive instances and true positive predictions among all
actual positive instances) into one single value obtained by aver-
aging precision over all the thresholds. The AP is given by the
following equation:

AP =
∑

n

(Rn − Rn−1)Pn. (4)

Here Rn and Pn are respectively recall (also called TPR) and
Precision at the n-th threshold. The Precision is defined as
follows:

Precision =
TP

TP + FP
. (5)

The mAP is obtained by computing the mean AP over the test
dataset.

MSSIM. The MSSIM (Wang et al. 2004) was originally
designed to measure similarity between two images a and b in
terms of luminance, contrast and structures at the pixel level. It
is defined as

SSIM(a, b) = [l(a, b)]α × [c(a, b)]β × [s(a, b)]γ (6)

with α, β and γ being constants, and

l(a, b) =
2µaµb +C1

µ2
a + µ

2
b +C1

(7)

c(a, b) =
2σaσb +C2

σ2
a + σ

2
b +C2

(8)

s(a, b) =
2σab +C3

µaµb +C3
(9)

where µa, µb are the local means; σa, σb are the standard devi-
ations; and σab is the cross-variance between images a and b.
C1, C2 and C3 are small constants that are introduced to avoid
instability of the MSSIM computation (Wang et al. 2004). Green
et al. (2017) proposed to consider filament segmentation as a
low-quality version of the density image and use the MSSIM
to compare segmentation as output by different models. Hence
while the MSSIM score is not fully relevant by itself, comparing
two segmentations through the MSSIM scores computed with
the same density/reference image may show genuine differences
at the structural level (i.e. filaments). We note that the MSSIM
is not a supervised metric (i.e. it is not based on the annotation
used during training).

6.3. Comparison with our previous work

The UNet and UNet++ architectures used in this study are iden-
tical to those in Zavagno et al. (2023), yet the results differ
significantly. In Zavagno et al. (2023), two regions of the Gp
were excluded from the learning step for testing, and the mod-
els were trained in a single attempt without hyper-parameter
selection on the remaining data. Moreover, due to the non-
implementation of randomization for the selection of patches, it
was not possible to obtain a reliable segmentation of the whole
Gp. Despite this, a comparison of several learning rates was
performed. The work of Zavagno et al. (2023) was a proof-of-
concept study to explore the potential of neural networks for
filament’s identification over the Gp, in a supervised manner,
using the masks of the existing filament catalogue (Hi-GAL)
published by Schisano et al. (2020). Additionally, the UNet seg-
mentation was able to remove catalogue artifacts caused by data
noise and discover previously undetected filaments.

In contrast, this paper introduces a data distribution strat-
egy that enables the segmentation of the entire Gp. During
training, neural network hyper-parameters are optimized using
a validation set, and performance across different architectures
is compared for the whole Gp. Furthermore, this study compares
the UNet and UNet++ architectures with two other models: the
Swin-UNet and a new model we introduce that adds at different
locations in the UNet architecture (see Fig. 1) the position of the
patches in the Gp, the PE-UNet.

7. Results

In this section, we report and compare the results obtained using
UNet and PE-UNet architectures. We first compare the models
using the metrics presented in Section 6.2. This is an objective
evaluation that provides useful insights but where the compari-
son concerns labeled pixels only (see Section 4.2), meaning that
the behaviour of the models on ambiguous pixels (that may be
the most interesting) is not taken into account. To go further and
get a deeper understanding of how the models compare to each
other we then visually analyze and compare the segmented maps
obtained using the different models in Section 7.2.

7.1. Metric-based experimental study

In this section, we investigate the relative performance, with
respect to the metrics defined above, of the three UNet baseline
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Table 1. Comparative results of segmentation models.

Model DSC mAP AUC ROC MSSIM

UNet 0.9680 0.9949 0.9960 0.1313
UNet++ 0.9690 0.9953 0.9960 0.1356
SwinUNet 0.9637 0.9939 0.9950 0.1409
PE-UNet-I 0.9649 0.9950 0.9960 0.1418
PE-UNet-D 0.9685 0.9952 0.9962 0.1315
PE-UNet-L 0.9746 0.9970 0.9976 0.1380

Notes. Comparative results of segmentation models with respect to four
metrics: DSC and MSSIM which are threshold dependent, and mAP and
AUC ROC which are integrated over the threshold range. All results are
averaged over 5 folds. The best result for every metric is indicated in
bold, significance tests for the DSC metric are provided in Table 2.

Table 2. Significance results for comparing models.

Method UNet++ SwinUNet PE-UNet-D PE-UNet-I PE-UNet-L

UNet 0.2881 0.0792 0.7464 0.9803 0.0175
UNet++ 0.0060 0.8168 0.7948 0.0061
SwinUNet 0.0585 0.3305 0.0031
PE-UNet-D 0.8430 0.0006
PE-UNet-I 0.1676

Notes. The table reports p-values obtained from paired t-tests on the
DSC metric. A test is run to compare every pair of models. A p-value
below 0.05 suggests that the difference in DSC between the two studied
architectures is significant with a confidence of 95%. Values in bold are
p-values lower than 0.05.

models, UNet, UNet++, SwinUNet and of the three PE-UNets
(with three different ways of inputting the position information).
In particular, we compare the relative performance of the three
variants of PE-UNets.

We report comparative results obtained for the prediction of
the full Gp using the strategy described in Section 5.1.1. Table 1
reports metrics where Column 1 presents the different architec-
tures tested, Column 2 is the average DSC value across the 5
folds, Column 3 the average mAP value, Column 4 the average
AUC ROC value and Column 5 the average MSSIM value, for
each corresponding model. Table 2 reports significance results
when comparing pairs of models using statistical tests, in par-
ticular, p-values obtained from paired t-tests (Yuen & Dixon
1973) performed on the DSC series for each pair of models (see
Section 5.1.2). The null hypothesis is that the two sets of values
come from two distributions with the same mean, and the con-
fidence in rejecting the null hypothesis is given by the p-value,
where a p-value below 0.05 indicates that the difference in per-
formance between the two architectures under consideration is
significant at a 95% confidence level.

First, we see that the PE-UNet-L model outperforms all other
models whatever the metric, except for MSSIM where the PE-
UNet-I gets the highest score. We note that the three metrics
DSC, mAP and AUC ROC more or less provide the same rank-
ing of the six models. We chose the DSC metric to perform
a significance analysis of the results. Second, the PE-UNet-L
significantly outperforms the three baseline models, with every
p-value being below 0.05 (in bold in Table 2). Finally, the three
metrics DSC, mAP and AUC ROC are quite consistent but the
MSSIM metric strongly disagrees with these. After a deeper
analysis presented in Appendix D, we conclude that the MSSIM

metric is not reliable enough and we do not draw any con-
clusion from the results obtained with this metric. We report
MSSIM results as MSSIM is a standard metric used in the fil-
ament detection field but unfortunately after investigating the
impact of the hyperparameters on the MSSIM metric we found
that conclusions one may draw may vary depending on the cho-
sen hyperparameters (refer to Appendix D for additional details),
making this metric less reliable than expected.

Next, we investigate the impact of the position encoding
location within the model. As shown in Table 1, encoding the
position in the latent space yields better results across the three
classification metrics (DSC, mAP, AUC ROC). According to the
significance tests (Table 2), the PE-UNet-L significantly outper-
forms PE-UNet-D where the position is input to the decision
layer. On the other hand, there does not seem to be significant
differences between encoding the position at the input or at the
intermediate layer (p-value of 0.1676).

We also note that the performance of the PE-UNet-I and
of the PE-UNet-D are not significantly different while the PE-
UNet-L is the only PE-UNet architecture that is significantly
better than the other models (UNet, UNet++ and SwinUNet).

7.2. Comparison of models’ performance with segmentation
maps

Results using metrics (see Section 7.1) give the architecture that
best recovers, at the pixel level, the input annotation for fila-
ment and background masks (see Section 4.2 for details). As
presented in Table 1 the DSC metric obtained for PE-UNet-L
gives a 97.46% accuracy on the recovery of the labelled data.
However, due to the known incomplete labelling over the Gp
(refer to Section 4.2), we have no guarantee that this value is
valid for the remaining part of the Gp. In order to obtain this
result, we construct segmentation maps of the Gp to check if the
indication given by the metrics on the best model corresponds
to the targeted astrophysical results obtained for the segmented
maps, i.e. the robust detection of filaments over a large range of
density, including low-contrast and low-density ones. In particu-
lar, we are interested in checking how realistic are the structures
detected, because we have no absolute ground truth for the fil-
ament class. Segmentation maps are obtained after computing
the segmentation of every patch of the Gp and then binarizing
the continuous maps using a threshold of 0.5 (see Section 6.2
for threshold discussion). The detailed procedure can be found
in Appendix E. From those segmentation maps, we use the nor-
malized map as a reliable proxy for filamentary structures. This
hypothesis is discussed on an empirical basis in Section 7.2.1. In
the following, we compare segmentation maps obtained with the
different architectures presented in Section 7.1. We note that in
all the following figures, the representations are given in Galactic
coordinates and north is up and east is left.

7.2.1. Local min-max normalized column density map

In order to gain a deeper insight into the data used by our mod-
els during both the training phase and the segmentation of the
Gp, we reconstruct a map of the entire Gp after normaliza-
tion being applied. The local min-max normalization performs
a background subtraction on a local spatial scale (at the scale
of a patch, i.e. 32 × 32 pixels), revealing low-contrast filaments
that are not seen on the original column density map. The way
we use this map is presented in this Section, in particular its
astrophysical interest and its use for validation of our results. We
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Fig. 5. Comparison of the column density map (top) and the cor-
responding local normalized column density image (bottom) on a
low-density region of the Gp centred at (l, b) =181°, 0°. Examples
of high- and low-contrast filaments (discussed in the text) present on
the original column density map (top) and their counterparts on the
normalized map (bottom) are identified with cyan and yellow arrows,
respectively. The red square (top) shows a 32 × 32 pixels box over
which the normalization is performed. The original column density
map is represented in logarithmic scale and spans the range 1 × 1021 to
2 × 1022 cm−2.

note that the high dynamical range observed on Hi-GAL col-
umn density images makes challenging the optimal visualization
of these images. For this purpose, Li Causi et al. (2016) have
developed a multi-scale algorithm to optimize the visualization
of the Herschel Hi-GAL images of the Gp allowing for optimized
visualization of both high- and low-contrast emission.

The resulting normalized column density map we create
is shown for two characteristic column density zones of the
Gp, a low-density region centred at (l, b)=180.19°, 0° (see
Figure 5, with a mean-max column density range of 1 × 1021

to 2 × 1022 cm−2) and a high-density region centred at (l, b) =
332°, 0° (see Figure 6, with a mean-max column density range
of 6× 1021 to 1× 1023 cm−2). This normalized map of the whole
Gp has numerous advantages: by removing the local background
it reveals clearly the filamentary structure of the medium in
both low- and high-density regions of the plane. As no abso-
lute ground truth exists for filaments, in the following we use
this map, together with data obtained at other wavelengths (with
telescopes other than Herschel), to validate the detection of fila-
ments by the different models. This validation is based on visual
inspection. Before their final individual confirmation which is
ongoing but beyond the scope of this paper, all the filaments
described in the following are candidate filaments. We note that
the normalization process erases important physical informa-
tion associated with a given structure such as column density
and mass. However, the information can be easily recovered by
reprojecting the structure on the original column density map.

The filamentary structures observed on this normalized map
exhibit different configurations that will drive the future learn-
ing of what a filament is by the different architectures used.
In the following we consider as candidate filament an elon-
gated structure with an aspect ratio >3 (see Kumar et al. 2020)
observed on the normalized column density map. Most of the fil-
aments host compact sources that are not removed from the map
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Fig. 6. Comparison of the column density map (top) and the cor-
responding local normalized column density image (bottom) on a
high-density region of the Gp centred at (l, b) = 332°, 0°. Examples of
high- and low-contrast filaments (see text) present on the original col-
umn density map (top) and their counterparts on the normalized map
(bottom) are identified with cyan and yellow arrows, respectively. The
original column density map is represented in logarithmic scale and
spans the range 6 × 1021 to 1 × 1023 cm−2. The white and black squares
on the original column density and normalized map, respectively, are
saturated regions.

before the learning process. This means that the ensemble (fila-
ment+sources) is learnt and further segmented. In the following
we use the generic term filament to describe this ensemble,
keeping in mind that they are only candidates at this stage.

Two categories of filaments are observed on the normalised
column density map: high-contrast filaments that have a peak
emission/local background >2 on the original column density
map and that are already well structured as elongated (aspect
ratio >3) emission in the original map and low-contrast fila-
ments (that have a peak emission/local background <2 on the
original column density map. These two categories of filaments
are observed in both low and high column density zones of the
Gp. We define the local background on the original column den-
sity map as the average emission level that is observed in the
immediate surrounding region (<6 pixels) around the filament.
Examples of these high- and low-contrast filaments are shown
with cyan and yellow arrows, respectively on Figure 5 (a low-
density region of the Gp) and Figure 6 (a high-density region
of the Gp). High-contrast filaments are characterized by bright
structures that sit on a very low local emission on the normal-
ized emission map (dark zones on the normalized map). These
high-contrast structures are well seen on the normalized input
map and are easily recognized (associated pixels classified as
filament) by the different networks. The low-contrast filaments,
which are barely seen on the original column density map, are
revealed clearly by the local min-max normalization process
and so appear well on the normalized column density map (see
Figure 5). Compared to the high-contrast filaments, their appear-
ance is fluffier and they are, in some cases, less well-detached
from their surrounding emission on the normalized map but they
are detected by the networks as long as they appear as elongated
structures (aspect ratio > 3). Their detection score is particularly
high with the PE-UNet-L segmentation. The last type of emis-
sion that appears on the normalized column density map is a
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local, diffuse and non-structured emission that is not classified
as filament by the networks. As observed in Figures 5 and 6,
the normalized column density map reveals a highly filamentary
medium, where high-contrast filaments appear thin, very well
defined and well detached from their surrounding whereas lower
contrast filaments appear larger and fluffier. We note that the
presence of compact sources associated with these filaments is
also particularly well-revealed by the normalization process.

7.2.2. Comparison of the Hi-GAL normalized column density
map with 12CO (3—2), 2MASS and Spitzer data

A way to ascertain the nature of the structures (filaments and
compact sources) observed on the normalized map is to use data
obtained at other wavelengths that trace well the density of the
interstellar medium. In the following, we use both near- and mid-
infrared data and millimeter spectroscopic data to ascertain the
nature of some of the observed structures. In particular, we use
the 12CO (3–2) High-Resolution Survey (COHRS) of the Galac-
tic Plane (Park et al. 2023) that covers the 9.◦5 ≤ l ≤ 62.◦3 and
|b| ≤ 0.◦5 range with a spatial resolution of 16.′′6 and a spec-
tral resolution of 0.635 km/s. Because we work on 2D data,
we use the 2D version of the COHRS spectroscopic data that
corresponds to the 3D cube integrated over the observed veloc-
ity range (Park et al. 2023). At this stage, because we work
with 2D data, we do not add information about the velocity
structure of the filament masks we use. We note that, using
13CO (2–1) and C18O (2–1) data of the SEDIGISM survey
(Structure, Excitation, and Dynamics of the Inner Galactic Inter
Stellar Medium), Mattern et al. (2018) show that 70% of the
filaments they studied are velocity coherent. Figure 7 shows
a comparison of the 12CO (3–2) velocity-integrated COHRS
map and the normalized column density map centred at (l, b) =
16.5°, 0°. Although not at the same spatial resolution and
sampling different excitation conditions of the ISM, the two
maps present clear similarities, including the presence of fila-
mentary structures and bright compact sources, as underlined
in Fig. 7. We note also that no background has been subtracted
on the COHRS 2D image, rendering the one-to-one comparison
between the two maps difficult. Based on a visual inspection,
the same comparison has been lead on the whole COHRS 12CO
(3–2) velocity-integrated image and confirms on both low and
high column density regions that compact sources and filamen-
tary structures identified on the normalized column density map
have counterpart in the molecular range, confirming their real
existence and validating our use of the normalized map to ascer-
tain the ensemble (compact sources + filamentary structures)
observed on the segmented map. Data at other wavelengths can
also be used to validate the use of the normalized column den-
sity map to validate the classification given by the segmented
map. As shown in Figure 8 2MASS data (Skrutskie et al. 2006)
confirm that the filamentary structures observed on the normal-
ized column density map correspond to dark absorption zones in
the near-infrared, as expected for dense absorbing regions of the
Galactic ISM made of gas and dust. The mid-infrared domain
can also be used to ascertain the nature of structures observed
on the normalized column density map. Dense regions of the
ISM appear as dark features in this spectral range. In partic-
ular, the infrared dark clouds (IRDCs) identified with Spitzer
data (Peretto & Fuller 2009) have opened an important field of
research for star formation, as representing the location for the
formation of stellar protocluster. Recent works show how active
is this field of research (Rigby et al. 2024; Reyes-Reyes et al.
2024; Izumi et al. 2024). Figure 9 presents a comparison of the
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Fig. 7. Comparison of the COHRS 12CO (3—2) velocity-integrated
image (top) and the corresponding local normalized column density
image (bottom) on a low-density region of the Gp centred at (l, b) =
16.5°, 0°. The compact sources (red circles) and filamentary structures
(orange arrows) seen on the two maps are underlined. The COHRS
image is represented in a linear scale with an intensity that spans the
range of 0–80 K km/s.

velocity-integrated COHRS map with the normalized column-
density map, the original Hi-GAL column density map and
the Spitzer-IRAC 3.6µm (orange) and 4.5µm (red) GLIMPSE
360 mid-infrared data (Whitney et al. 2011) of a portion of the
Gp centred at the location (l, b) = 10.50°, −0.18°. This region
has been chosen as an illustrative example at it hosts the well-
known Galactic infrared dark cloud, the ‘Snake’, G11.11−0.12
(Pillai et al. 2006). This structure is underlined with a red arrow
in Figure 9. Well-seen in absorption on the two colour-composite
3.6µm (orange) and 4.5µm (red) Spitzer-IRAC GLIMPSE 360
image, this dark cloud is clearly seen in emission on both the
Hi-GAL column density map and on the normalized map. We
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Fig. 8. Comparison of the 2MASS JHKS colour image (top left), normalized column density map (top right), column density map (bottom left)
and COHRS 12CO (3–2) velocity-integrated image (bottom right) in a low-density region of the Gp centred at (l, b) = 16°, 0°. The original column
density is displayed in logarithmic scale and spans the range 3 × 1021 to 5× 1022 cm−2. The COHRS image is represented in a linear scale with an
intensity that spans the range of 0–70 K km/s.
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Fig. 9. Comparison of GLIMPSE 360 3.6µm (orange) and 4.5µm (red) Spitzer-IRAC image (top left), the normalized column density map (top
right), the column density map (bottom left) and the COHRS 12CO (3–2) velocity-integrated image (bottom right) in a region of the Gp centred at
(l, b) =10.50°, −0.18°. Weote the presence of the infrared dark cloud G11.11−0.12, the Galactic ‘Snake’, identified by the red arrow. The original
column density is displayed logarithmic scale and spans the range 1× 1021 to 1× 1023 cm−2. The COHRS image is represented in a linear scale
with intensity that spans the range of 0–100 K km/s.

note that the compact sources present in this IRDC are well-
revealed on the normalized map. We note that this cold and dense
feature is barely detected on the velocity-integrated COHRS map
(see Figure 9) due to its low temperature (Wang et al. 2014;
Dewangan et al. 2024).

7.2.3. Comparison of UNet-based segmentation maps

We compare the results obtained by the different models using
the segmentation maps, in particular the differences observed
between the different versions of UNet with no encoding of
the position, namely, UNet, SwinUNet, UNet++ and the three

versions of the model with position encoding (PE-UNet-I, PE-
UNet-L, and PE-UNet-D). As concluded using the metrics and
as observed on the segmentation maps, the different models all
performed very well in recovering the input filamentary struc-
tures. In particular, the high-contrast, high-density filaments are
detected by all models with the particularity, for the SwinUNet
to broader all the detected structures, compared to the other
models. On the newly detected filaments, the UNet, SwinUNet
and UNet++ are more able to detect structures associated with
noise than PE-UNet, with SwinUNet performing even better than
UNet++ in these zones. SwinUNet shows good performance on
low-contrast structures when the local emission observed around
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Fig. 10. Comparison of the segmented maps obtained using the PE-UNet-L and UNet versions centred on a low column density region of the plane
at the location around l = 163°, 0°. The difference between the two segmented maps (PE-UNet-L – UNet) is shown (left) with the corresponding
column density map (middle) and local normalized column density map (right). The white (black) features seen on the left map correspond to
features detected with the PE-UNet-L (UNet) only.
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Fig. 11. Comparison of the segmented maps obtained using the PE-UNet-L and UNet versions centred on a high column density region of the
plane at the location around (l, b) = 353°, 0°. The difference between the results of the two segmented maps (PE-UNet-L – UNet) is shown (left)
with the corresponding column density map (middle) and the local normalized column density map (right). The white (black) features seen on the
left map correspond to features detected with the PE-UNet-L (UNet) only.

the structures is low, as observed, for example, at high latitudes
above the plane in high-density regions, on the edges of the map.
This effect is not observed for UNet++. Towards high-density
regions, the differences between PE-UNet-L are higher (com-
pared to SwinUNet) than to UNet++, with a higher level of
detection towards the central part of the plane.

7.2.4. Comparison of PE-UNet-Latent and UNet
segmentation maps

Because PE-UNet-L appears as the best model according to
the metrics, in the following we focus the comparison on the
segmented maps produced by PE-UNet-L and UNet. This com-
parison aims at understanding what brings the position encoding
for the detection of filaments, using the UNet architecture. On
the whole Gp, the difference between the two segmented maps
(PE-UNet-L – UNet) is non-uniform over the plane and shows
important variations as a function of the longitude and lati-
tude positions, with a dominance of the PE-UNet-L detections
towards lower density regions (132–208°), compared to the UNet
in higher density regions (0–36°). This confirms that the posi-
tion encoding in the latent space introduces a dependence on

the detection of filaments. A close-up view on regions charac-
terized by either low or high column density reveals a more
complex behavior, as illustrated in Figures 10 and 11. The dif-
ference of the two segmented maps (PE-UNet-L – UNet) is
presented on two characteristic column density regions of the
plane, i.e. the central part (high-density region) centred at (l, b)
= (353°, 0°) and a low-density region centred at (l, b) = (163°,
0°). As seen in Figures 10 and 11, the first clear difference
between the PE-UNet-L and UNet segmentation resides in the
clear longitude- and latitude-dependence on the detection of
new filamentary structures. Compared to the segmented map
obtained using UNet, the one obtained using PE-UNet-L shows
an increase in the number of new pixels classified as filament in
the low-density region (78% more pixels classified as filament
for Figure 11) whereas the detection is not changed too much in
the high-density region (11% fewer pixels classified as filaments
for Figure 10). This suggests that the PE-UNet-L model is par-
ticularly sensitive to low-contrast structures at the same time as
being able to detect high-contrast ones.

In regions of high-contrast and high-density, no clear dif-
ferences are observed between PE-UNet-L and Unet, suggest-
ing that PE-UNet-L particularly acts in low-density regions
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Fig. 12. Comparison of the segmented maps obtained using the PE-UNet-L and UNet versions centred on a high column density region of the
plane at the location around (l, b) = 144°, 0.3°. The difference between the result of the two segmented maps (PE-UNet-L – UNet) is shown (left)
with the corresponding column density map (middle) and the local normalized column density map (right). The white features seen on the left map
correspond to features detected only with the PE-UNet-L.

on low-contrast structures. However, some low-density regions,
such as the one centred around l = 129° show little differences
between the two segmented maps, suggesting that another factor
(other than the characteristic density or the contrast) is responsi-
ble for the observed differences. Some regions of the plane are
associated with a higher level of data noise in the data that is
enhanced by the normalization process, observed in both low-
density (around l = 129°) and high-density regions (around l =
345°). This results in a good detection of the noisy structures
by the UNet but a lower detection by the PE-UNet-L, suggesting
that this last is more sensitive to the noise. UNet detects struc-
tures associated with a higher level of noise, with a higher score
than the PE-UNet-L. This statement is seen in both high- and
low-density regions of the Gp and only depends on the local
level of noise. The different sources of noise present in the orig-
inal Hi-GAL data are discussed in detail in Zavagno et al. (2023,
Appendix A). These regions are masked during the training pro-
cess and so treated with caution on the segmented maps. When
analyzing filaments in noisy regions, we favour the UNet model.

Compared to UNet, PE-UNet-L allows the detection of new
structures, in particular the low-contrast ones that are barely seen
on the original column density map but that are better revealed
on the normalized map. PE-UNet-L particularly performs over
UNet in regions where the contrast (structure/background) on the
original column density map is low (a few percent) and where
the local background is more uniform (and so easier to remove),
leading to a strong enhancement of the low-density structures
on the normalized map. These structures are particularly well
detected by the PE-UNet-L. This is illustrated in Figure 12. The
structures seen in white on Figure 12 (top left) correspond to
low-contrast filaments that are barely seen on the original col-
umn density image (see Figure 12 (top right)). This sensitivity
to lower contrast emission from the PE-UNet-L is also responsi-
ble for the contouring effect observed, as illustrated on Figure 12
(top left) where white contours are observed and correspond to
the extension of higher contrast filaments that are detected by
the UNet, but not their lower contrast surrounding part. This
translates into a new contouring feature, observed around the
structures previously detected by the UNet. This effect shows a
clear dependence on the Galactic position and is mainly driven
by the local background that creates lower-contrast emissions
around higher-contrast filaments. Filaments detected previously
by the UNet appear now slightly extended on the difference map.

This extension corresponds to a lower-contrast density emission
to which the PE-UNet is more sensitive. The new detections are
particularly found in regions of low intensity for features that
have low contrast (a few percent above the local background).
Although barely seen on the column density map (see Figure 12),
these structures are better revealed on the normalized map. The
detection is even better when the background is low and more
uniform on the original column density map.

As seen in Figure 13 a drastic change in the behavior of
the difference map is observed at the position centred at (l, b)
= 305°, 0°. This change is driven by the change in the original
column density map (more diffuse and homogeneous emission at
l <305°, more structured and with higher emission contrast for
l >305°). This results in a minor difference between PE-UNet
and UNet, confirming that, compared to the UNet, the optimal
range of action of PE-UNet-L is for lower contrast structures.

7.2.5. Comparison of UNet-based segmentation maps with
previous filaments detection from Schisano et al.

Results from metrics presented in Section 7.1 show that UNet-
based models recover from 96 to 97% of the input annotation
(for both filaments and background) at the pixel level. In this
Section we present a comparison of the segmented maps of the
whole Gp created using UNet-based models with the map of the
input filament masks from Schisano et al. (2020). The idea is to
ascertain the nature of the new detected structures and to discuss
their properties.

In Figure 14 and Figure 15 we present the comparison of
structures detected with the PE-UNet-L with the ones that were
previously detected by Schisano et al. (2020), in two charac-
teristic regions of the Gp at low and high column density,
respectively. We chose the PE-UNet-L segmentation map for the
comparison as it results from the best of all tested models.

Structures detected previously by Schisano et al. (2020) are
detected by all the UNet-based architectures, with their width
slightly enlarged. This was already observed with the UNet and
corresponds to the fact that the masks used as inputs trace
only the crest of the filament (Zavagno et al. 2023, see their
Section 4.3 and figure 21) and that the structures observed on
the normalized map are often associated with a more diffuse
emission that is likely to belong to the structure itself as a local
background has been removed.
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Fig. 13. Comparison of the segmented maps obtained using the PE-
UNet-L and UNet at location around (l, b) = 305°, 0°. The difference
between the binarized PE-UNet-L and UNet segmentation maps (top),
the normalized column density map (middle), and the original column
density map (bottom) are shown. The white (black) features seen on the
top map correspond to features detected with the PE-UNet-L (UNet)
only.
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Fig. 14. Comparison of the segmented map obtained using (from top
to bottom) the PE-UNet-L and the original input mask map detected
by Schisano et al. (2020) at the location around (l, b) = 180°, 0°. The
original and normalized column density maps are also shown.

310.0◦ 309.0◦ 308.0◦ 307.0◦ 306.0◦

0.4◦

0.2◦

0.0◦

−0.2◦

−0.4◦

Galactic Longitude

G
a
la

ct
ic

L
a
ti

tu
d
e

310.0◦ 309.0◦ 308.0◦ 307.0◦ 306.0◦

0.4◦

0.2◦

0.0◦

−0.2◦

−0.4◦

Galactic Longitude

G
a
la

ct
ic

L
a
ti

tu
d
e

310.0◦ 309.0◦ 308.0◦ 307.0◦ 306.0◦

0.4◦

0.2◦

0.0◦

−0.2◦

−0.4◦

Galactic Longitude

G
a
la

ct
ic

L
a
ti

tu
d
e

310.0◦ 309.0◦ 308.0◦ 307.0◦ 306.0◦

0.4◦

0.2◦

0.0◦

−0.2◦

−0.4◦

Galactic Longitude

G
a
la

ct
ic

L
a
ti

tu
d
e

Fig. 15. Comparison of the segmented map (from top to bottom)
obtained using the PE-UNet-L and the original input mask map detected
by Schisano et al. (2020) at the location around (l, b) = 308°, 0°. The
original and normalized column density maps are also shown.

The difference is more pronounced in the low-density
regions of the Gp where a high number of new low-contrast
and low-density structures are now detected with the UNet-
based architectures. Compared to the input masks, all the newly
detected structures observed on the segmentation map corre-
spond to the structured emission observed on the normalized
column density map. As presented in Section 7.2.1 most of these
structures correspond to both absorption in the near- and mid-
infrared and to emission in the millimeter ranges, indicating their
nature as filamentary molecular clouds.

7.2.6. Comparison of PE-UNet segmentation maps

After showing that the PE-UNet-L model offers a significant
improvement compared to UNet, in particular in the detection of
low-contrast filaments, we discuss here the differences observed
between the three PE-UNet versions tested. We recall that the
difference between these three models resides in the location of
the patch position encoding in the network (see Figure 4). The
idea here is to explore the impact the position encoding’s place
in the architecture has on the detection of the structures.

Results of the corresponding segmented map on two char-
acteristic zones of the plane are shown in Figure 16 (for the
low-density region) and Figure 17 (for the high-density region).
On the two representative regions of the Gp, similar detections

are observed for the three versions of the PE-UNet, all corre-
sponding well to structured emission observed on the normalized
column density map. Local variations are observed on a smaller
spatial scale for low-contrast filaments that are better detected by
both PE-UNet-D and PE-UNet-L compared to PE-UNet-I that
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Fig. 16. Comparison of the segmented maps (from top to bottom)
obtained using the three PE-UNet versions at the low-density location
centred on (l, b) = 180°, 0°: PE-UNet-I, PE-UNet-D, PE-UNet-L. The
corresponding normalized column density map is also shown.
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Fig. 17. Comparison of the segmented maps obtained using the three
PE-UNet versions at the dense location centred on (l, b) = 308°, 0°(from
top to bottom): PE-UNet-I, PE-UNet-D, PE-UNet-L. The corresponding
normalized column density map is also shown (bottom).

tend to miss these, the best performance (highest score on the
segmented map) being obtained by PE-UNet-L.

On the whole Gp, the behavior of the three versions for struc-
ture detection depends on the position (longitude and latitude) in
the plane. High-contrast filaments (associated with a dark sur-
rounding on the normalized map) are well-detected by all three
versions, the higher score being obtained for PE-UNet-L. The
main difference observed between the three versions of PE-UNet
is in the robustness of the model to the noise present in the data.
PE-UNet-I and PE-UNet-D are more robust for the detection of
structures in regions where a higher noise level is observed (over-
lapping regions that connect successive tiles; see e.g. Zavagno
et al. (2023, Fig. A1) for a discussion of the different noise
sources present in the Hi-GAL data). They detect structures there
that are not detected by PE-UNet-L, PE-UNet-I being more effi-
cient than PE-UNet-D in these cases. As for the comparison
with UNet, we recall that noisy regions are treated with caution
on the segmented maps and are excluded from the training and
learning process. In high-density regions of the Gp PE-UNet-I
better detects structures than the PE-UNet-L on the edges (lat-
itude |b|) >0.6°) of the plane where the level of emission on
the original column density image becomes significantly lower
(decreases by a factor of 2). In the mid-plane, where the emis-
sion on the original column density map is very high, PE-UNet-L
detects more low-contrast structures than PE-UNet-I.

To summarize this Section, PE-UNet-L gives the best per-
formance for structure detection compared to PE-UNet-I and
PE-UNet-D in regions of the Gp not affected by noise. In this
case, PE-UNet-I is more robust and able to detect structures
associated with noise.

7.2.7. Generalization of the trained model: Segmentation
of the 12CO (3–2) COHRS dataset

Generalizability for image segmentation is one of the major
challenges in deep learning, in particular for medical imaging
(Torpmann-Hagen et al. 2022). The huge amount of data avail-
able for the Gp makes the study of generalization of the model
trained important. In this Section, we evaluate the generalization
capability of our model by applying it to segment the 2D (posi-
tion, position) velocity-integrated version of the 3D (position,
position, velocity) 12CO (3–2) COHRS dataset with a model
trained on the NH2 Hi-GAL dataset. We proceed as follows: We
use the COHRS 12CO (3–2) velocity integrated map publicly
available at doi:10.11570/22.0078 that gives a 2D (position,
position) emission map at the original resolution of 16.′′6. Then
we smooth this map to the resolution of 36′′ that corresponds
to the spatial resolution of the Hi-GAL column density map,
using the reproject_adaptive function in the python repro-
ject package. From this newly created image we extract a series
of 32 × 32 pixels patches with a stride of 1 (resulting in an over-
lap of 31 pixels), as we did for the column density image of
the Gp (see Appendix E). All patches are then normalized using
the local min-max normalization described in Section 4.3. The
patches are then segmented using the PE-UNet-L model learnt
on NH2 data. The final stage is the creation of the segmented
map for the whole 2D COHRS map by combining and averaging
all the patches (see Appendix E for details). The obtained seg-
mented map is then binarized to a threshold of 0.5. The result of
the velocity-integrated 2D 12CO (3–2) COHRS segmentation is
presented in Figure 18 where the model learnt on NH2 data using
the PE-UNet-L architecture has been applied to the COHRS 2D
map. The inference time to obtain the COHRS segmentation
maps is about 12 hours.
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Fig. 18. Segmentation of the velocity-integrated 2D (position, position)
12CO (3–2) COHRS map using the model learnt on the column den-
sity image of the Gp with PE-UNet-L at the location centred at (l, b)
= 16.5°, 0°. The min–max normalized COHRS (top left) and NH2 (top
right) maps are shown. The corresponding segmented maps using the
PE-UNet-L learnt model on NH2 data are shown for COHRS (bottom
left) and NH2 (bottom right).

The segmentation of the 2D COHRS map obtained shown
on Figure 18 (bottom left) well corresponds to the structured
emission observed on the normalized COHRS map shown on
Figure 18 (top left) suggesting that the filamentary molecular
clouds are well recovered by the generalization process. Regions
associated with a higher level of noise in the original 2D COHRS
map observed at latitude b = 0.25°) are not well treated by the
segmentation process and appear as round dense zones on the
segmented map (see Fig. 18 bottom left), clearly different in
shape from the detected filamentary structures seen on the map.
This is due to the fact that the PE-UNet-L model is not well
adapted to the detection of structures associated with a high level
of noise (see Section 7.2.4 for a discussion).

Although tested only on the 2D version of the COHRS
spectroscopic dataset, this result is promising to envision the
generalization of this process to a larger dataset. Noise present
in the data is a clear limitation to this generalization process.
However, promising methods of denoising based on deep learn-
ing (Liu & Liu 2019; Li 2023) offer opportunities to ease the use
of generalization on a large sample of datasets.

8. Discussion

We now discuss the results presented in Section 7.1 and 7.2. We
have shown that the position encoding in the latent space with
the PE-UNet-L architecture gives the best performance when
comparing both metrics and pixels’ classification on the seg-
mentation maps. In particular, the PE-UNet-L is able to detect
low-contrast low-density filaments, that other UNet-based mod-
els barely detect while having similar results for high-contrast
high-density filaments. Those low-contrast low-density filaments
were previously not detected. In the following, we discuss the
impact of the data augmentation, including the rotation of the
patches, on the learning process.

8.1. Data augmentation

Data augmentation is a classical strategy used in the deep learn-
ing community to increase the size of the training set and get
better performance. It consists of applying a set of transforma-
tions T ∈ T to the data samples such that if (x, y) is a labeled
training sample, then {(T (x), y) ,T ∈ T } are additional valid
training samples (i.e. belong to the same distribution as one of
the training samples, e.g. {(x, y)}). A popular particular case is
transformations which are known to preserve the supervision
information for the task at hand. For instance when considering
object recognition tasks, one knows that rotations and flips do
not change the supervision (i.e. the class label) of an image (e.g.
a rotated chair is still a chair) so such augmentation strategies are
extensively used for learning computer vision systems.

While these standard image data augmentation strategies
might be used on our data, we argue that this should be done
carefully. For instance, a filament’s orientation might depend
on its position as it is related to the physical properties of its
surrounding medium, e.g. the orientation of the magnetic field.
Then any transformation that modifies the orientation of a patch
(e.g. and of the included filament if any) may break such an
underlying dependency, e.g. between the patch itself, its position
and the orientation of a filament it includes, if any. This would
make that rotated samples (T (x), y) do not obviously belong to
the same distribution as regular training samples (x, y).

This is particularly true if the model takes into account the
position of the patch it processes, as PE-UNet models do. In this
latter case we note an input sample as a pair (x, p) of a patch,
x, and of its position, p, and also note a labelled training sam-
ple as ((T (x), p), y). Then applying a transformation T to the
patches should satisfy the property that applying the set obtained
by transformation T the training data, {((T (x), p), y)}, follow the
same distribution as original training samples {((x, p), y)}. But
according to the discussion above this would not be true as, in an
augmented sample ((T (x), p), y), a rotated patch T (x) could not
match the original position p.

Yet, the conclusion of this discussion is not immediate.
Although using an unsuitable data augmentation strategy may
harm the learning of the model, at the same time, it allows
an increase in the size of the training set, which is known to
systematically improve the performance of a machine learning
model. At the end, the two effects play in opposite directions
and the issue depends on how unsuitable the data augmenta-
tion strategy is. We therefore designed experiments to analyse
further the impact of the rotation and flips as an augmentation
strategy in our experiments. The first question we address is:
Do non-orientation-preserving augmentation strategies lead to
a significant gain in performance? To answer this question we
compared the performance of two models, the UNet and the PE-
UNet-L, when learned either without, or with data augmentation
(flips and rotations) (see Table 3).

For both models, the use of data augmentation significantly
improves performance for all the metrics (we do not consider
the MSSIM metric here for reasons explained previously). The
second question is: How much does the unsuitability of the data
augmentation strategy hurt? The answer lies in the comparison
of the performance gain one observes when using data aug-
mentation, between the UNet model and the PE-UNet-L model.
As the UNet model does not exploit the position information
(see Appendix B), the data augmentation strategy looks suit-
able when using the UNet model, while it is not when using
the PE-UNet-L model as discussed above. One observes in
Table 3 a rather similar gain for the two models when using
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Table 3. Comparative results of segmentation models.

Model DA DSC mAP AUC ROC

UNet no 0.9270 0.9551 0.9782
PE-UNet-L no 0.9338 0.9627 0.9819
UNet yes 0.9680 0.9949 0.9960
PE-UNet-L yes 0.9746 0.9970 0.9976

Notes. Comparative results of segmentation models with respect to
the three classification metrics: DSC which is threshold dependent, and
mAP and AUC ROC which are integrated over the threshold range. All
results are averaged over 5 folds. The usage of data augmentation virtu-
ally increases the dataset size by 16 but breaks the orientation-position
relation of filaments.

data augmentation, meaning that the data augmentation strategy
is rather suitable for PE-UNet-L, which suggests that the link
between filament orientation and position might be lighter than
expected. In conclusion, we relied on rotation and flip augmen-
tation transformations in all our experiments (e.g. to get results
from Table 1 in Section 7.1) to reach the highest segmentation
performance.

8.2. Interests of the PE-UNet

Results presented in Section 7.1 show that providing the Galactic
position (through an encoding form) as an additional input to
a UNet-like model improves filament detection. Moreover, this
gain in performance is significant over every other architecture
for the PE-UNet-L. As detailed in Section 5.2, the PE-UNet-D
implements an adaptive threshold that depends on the position,
whereas the PE-UNet-I and the PE-UNet-L extract deep infor-
mation to perform segmentation differently depending on the
position. The fact that the latent implementation PE-UNet-L
reaches significantly better results than the adaptive threshold
one, PE-UNet-D, suggests that PE-UNet-L does more than adap-
tive thresholding. However, explaining the complex relations
learnt by the model is hard with machine learning models in
general and with UNets in particular, it would require specially
designed neural networks to extract explainability elements (see
Linardatos et al. 2020 for an introduction) which is out of the
scope of this paper.

We observed in our experiments that the PE-UNet-L archi-
tecture allows us to detect structures over the large range of
density and contrast that is perfectly suited to the conditions
observed over the Gp. Using the normalized column density map
as a proxy of the structures to be detected we checked that the
PE-UNet-L model performs at detecting filaments on the wide
range of density and contrast observed in the Gp. By perform-
ing structure detection over a large range of physical conditions,
PE-UNet-L exhibits an important added value compared to other
detection algorithms for the study of the life cycle of filaments in
the ISM that covers a wide range of density and contrast that are
difficult to embrace with a single model where the parameters are
fine-tuned towards a detection objective. To better demonstrate
the interest of position encoding, we performed experiments in
which we assigned a false position to the patches. The results
show that the position encoding strategy, when the correct posi-
tions are assigned to the patches, enables the detection of weak
filaments in low-density and low-contrast zones observed on the
normalized column density map.

The position encoding strategy corresponds to the follow-
ing approach: for each patch (input image), one provides the
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Fig. 19. Comparison of the Hi-GAL NH2 map (top) and the 2D (3D
velocity-integrated) 12CO (3–2) COHRS map (bottom) of a portion of
the Gp centred at (l, b) = 16°, 0°.

neural network with the patch’s position in the galactic plane
as an additional input. This allows the neural network to per-
form filament detection based on relationships between position
and filament properties (e.g. shape, length, width, contrast). We
chose to use a symmetric function to encode the position in our
experiments because it relies on physical knowledge on our data
(see Section 5.2.2 for justification) but any physically relevant
encoding function could be used. Hence, although the distri-
butions of atomic and molecular gas are different, the position
encoding strategy could be applied regardless of the data type
used, and is worth trying provided the prediction on a particular
zone of the data depends on its position.

8.3. Generalization capability of our models

To evaluate the generalization capability of our models, we per-
formed a segmentation of the 2D (velocity-integrated) 12CO
(3–2) COHRS map covering part of the Gp (see Section 7.2.1).
The result of this generalization is presented in Section 7.2.7
and Figure 18. Results show that the use of the PE-UNet-l
model learnt on the normalized column density image of the Gp
well reproduced the filamentary structures observed on the 2D
COHRS map, confirming the generalization of it. Apart from
the noisy regions associated with COHRS data where the model
does not perform well in recovering the filamentary structures,
the other regions are well detected.

Figure 19 shows the original data used in this experiment
of generalization, the Hi-GAL column density map and the
velocity-integrated COHRS map, both before their local min-
max normalization. We note that despite being observed at
different wavelengths, with different instruments and at different
spatial resolutions and tracing not the same phases of the ISM,
the two images show similar emission features, including fila-
mentary structures and bright compact sources that are clearly
noticeable. This experience shows that for data having a similar
emission structure than the NH2 column density map, a reason-
able result to detect filaments in the data can be obtained by
applying the model learnt on NH2 data. This offers important
perspectives for filament detection on large multi-wavelength
surveys of the Gp, allowing the study of filament properties over
a large range of physical conditions, from the cold ISM traced by
H I to the warmer phases better traced in the infrared.
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9. Conclusions

With the aim of proposing a robust method for filament detec-
tion over a large range of density and contrast observed in the
Gp, we explored the interest of position encoding in supervised
learning, following our proof-of-concept work (Zavagno et al.
2023). We presented an in-depth analysis of the existing segmen-
tation methods to allow the better detection of filaments in the
Gp, covering a large range in column density and contrast. We
introduced the random k-fold for data distribution that allowed
us to obtain, for the first time, a segmentation of the whole Gp
with machine learning.

Starting from the Hi-GAL NH2 column density map of the
Gp, we created a locally normalized column density map that
reveals the high degree of filamentary structures of the Gp ISM
over the whole covered range of column density. Using near-
infrared data from 2MASS, mid-infrared data from Spitzer, and
COHRS spectroscopic data, we discuss the robustness of this
normalized column density map that allowed us to ascertain the
detected structures.

Compared to previous works, we introduced the encoding of
the position of the patches in the Gp as an additional input to
the network. We proposed three UNet models that take as input
the patch and the position, which we call PE-UNet (Position
encoding UNet), which differ by the way this latter additional
information is input to the network.

We showed that exploiting the position in PE-UNets sig-
nificantly improves the detection over classical segmentation
architectures such as UNet, UNet++ and Swin-UNet. We further
studied how the three PE-UNet variants behave and proposed
explanations for the performance of the three models. We con-
clude that the PE-UNet is particularly sensitive to the contrast of
the structures in the original column density map. We observe
that the model PE-UNet-Latent, where the position encoding is
input in the latent space of the model, allows better detection of
both high-contrast and high-density structures (giving a better
score on the segmented map). It is particularly well suited for
detecting low-contrast structures that are barely detected (or not
detected at all) by more standard UNet models.

We also applied our best-learnt model (using PE-UNet-L) to
2D 12CO (3–2) COHRS data and show that the model can be
applied with reasonable results on a similar dataset. This gener-
alization capability offers interesting perspectives for the model
to be applied to large surveys of the Gp.

The detection of filaments over a wide range of density
and contrast with PE-UNet-based models, possibly extended
to different datasets with one learnt model, offers impor-
tant perspectives for the analysis of filaments observed in the
Gp, in particular to follow the life cycle of filaments (from
their formation to their fragmentation and collapse to form
stars).
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Appendix A: Building balanced datasets

A.1. Random subsets generation

As discussed in Section 5.1.1 of the manuscript we need to build
a series of training/validation/test datasets to enable inference
over the full Gp. This requires care since the data must be divided
into training/validation/test so that the distribution of training
samples, validation samples and test samples are aligned. In our
case, this means that one should take into the nature of patches
(e.g. low vs high density and/or contrast) and the distribution of
filament pixels which both vary with the longitude of the patch
(for instance there are more filament pixels in the centre of the
Gp than on the sides).

Hence we implemented a procedure to randomly create k
subsets of the Gp which are balanced according to the longi-
tude distribution. The Gp is first divided into a uniform grid of
squared areas (we used areas of 64×64 pixels). Then we perform
a partitioning of these areas in k subsets. For each longitude (i.e.
column of areas; see figure A.1), starting from the left of the
figure (centre of the Gp) to the right, the areas in the columns
are distributed amongst the subsets from top to bottom. The top
area (top of the figure) is randomly associated with one of the k
subsets, say subseti. The next area (the one below) is associated
with subseti+1, for example. The same random process is iterated
over columns from left to right. This partitioning is illustrated in
Figure A.1) for k = 3 and where the height of the Gp is about
6 areas. In this example, the first subset has been drawn for the
first (left column), the third subset has been drawn for the second
column, and so on. Following such a process ensures the areas
in a subset are approximately balanced concerning their longi-
tude. Once the subsets have been built, many (or all) patches are
extracted (cropped) from all areas in a subset to build a set of
samples (to be input to the segmentation models). To check the

Fig. A.1. Balanced partitioning of the Galactic plane to segment the
Hi-GAL dataset (Molinari et al. 2010; Schisano et al. 2020). The Gp
is first divided into a number of areas (squared blocks in the plots).
Then a partitioning of the Gp in k subsets is built where each subset
gathers blocks that are uniformly distributed along the longitudinal axis
(abscissas in the figure). In our experiments, we used blocks of 64 × 64
pixels as areas and many patches (samples) were extracted from every
area.

effect of our partitioning, we computed the longitude histogram
within each subset and obtained approximately uniform distribu-
tions. The obtained histograms may be found in Figure A.1 for

the case k = 5. One sees an inflexion point around 170°, which
may be explained by the noisy regions around 170° which have
been removed from the dataset (see Section 4.2).

As explained in the manuscript k pairs of training/test sets
are built from a set of subsets. To build one pair of datasets,
one considers patches from all subsets but one in the training set
(which will be again divided into training and validation data),
and patches from the last subset in the test set.

Fig. A.2. For each subset, the histogram of the number of patches is split
as a function of the longitude (one colour per subset). The variability
along the longitude axis is the result of noisy regions removed from the
dataset.

A.2. Random versus naive subsets generation

Alternatively, we could have used a simple, which we call naive,
subset generation, which is illustrated in Figure A.3). A naive
subset generation divides the Gp into k strips of equal size along
the longitude axis (see Figure A.3). Training/validation/test
datasets are then built as explained above.

Going back to our motivation for designing the random sub-
set generation procedure we compare here such a naive subset
generation with the proposed random subset generation in terms
of the number of pixels labelled as filament and background in
the k generated subsets.

Fig. A.3. Band (naive) partitioning of the Galactic plane to segment
the Hi-GAL dataset (Molinari et al. 2010; Schisano et al. 2020). The
Gp is divided into k bands which constitute the testing datasets. Models
are trained on the remaining data. From those bands, we extract many
patches (samples) that compose the different datasets.
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We plot the number of pixels labelled as filament and back-
ground in every subset for the random subsets generation and for
the naive subsets generation (using k = 10). As expected, the ran-
dom generation produces balanced datasets with less than 0.7%
difference between two subsets for both filament and background
(see Figure A.4) while one can observe up to 13% difference
between subsets generated by the naive procedure.

Fig. A.4. Number of pixels labelled as filament and background (y-axis)
in each of the ten subsets (x-axis) built using the random procedure (top)
and the naive procedure (bottom).

Appendix B: Position regression

Depending on the local physical conditions, the position of a fila-
ment in the Gp will influence its properties such as its orientation
(driven by the magnetic field), density and star formation prop-
erties (depending on its evolutionary status and local physical
conditions). Consequently, the position information should play
a role in filament detection and help statistical-based methods
such as neural networks.

While we propose in the paper to use the position of a patch
as an additional input to help segmentation, one may ask whether
the position information is not already available, to some extent,
in the density patch itself. If this was the case one should be
able to learn a model to predict the position of a patch within
the Gp based on the normalized density map patch. To test this
hypothesis, we used a model with the shape of the encoder of our
UNet models (hence with a similar capacity as our segmenta-
tion models) with a few fully connected layers added on top. We
learned the model to perform the regression task of predicting
the latitude (or latitude encoding) and the longitude (or longitude
encoding) of the patches. We performed experiments with and
without data augmentation (rotations and flips). The best results
were given when predicting position encoding without the use of
data augmentation. The regression results of this specific exper-
iment are presented in Figure B.1 where the predicted position
distribution is represented on the y-axis against the ground-truth.

A tendency to follow the red curve which represents the perfect
regression solution (predict = true label) can be observed for the
longitude axis even if the distributions within each band remain
quite large. The latitude distributions present every sign of a
close-to-random distribution. This indicates that part of the posi-
tion information is contained and retrievable from the patch itself
and therefore could be extracted by neural network to perform
filament segmentation.

Fig. B.1. Violin plot of the predicted position encoding for longitude
(top) and latitude (bottom) as a function of the ground truth.

We now want to verify that the information is used during the
segmentation task. To test this hypothesis, we take the encoder
part of one UNet trained for the segmentation task during the
cross-validation procedure described in Section 5.1.1 and add
the same dense architecture used in the previous experiment to
perform the regression task (position or position encoding pre-
diction). We keep the exact same procedure and data for a fair
comparison but we freeze the weight of the encoder part of the
neural network, i.e. only the classification layers will be updated
during the training phase, and the encoder part will remain
unchanged. This allows us to check if we can extract the position
information from the compressed representation of the data pro-
duced by the encoding part of the UNet when the targeted task is
semantic segmentation. Results show that in every configuration
(position or position encoding prediction and whether or not we
use data augmentation) the position information is not contained
in the embedding representation of the data. Despite the fact that
our model converges during training, we observe poor perfor-
mance in test (see Figure B.2). The loss of position information

Fig. B.2. Violin plot of the predicted position encoding for longi-
tude (top) and latitude (bottom) for every 0.1 position encoding. The
x-axis corresponds to true labels while the y-axis displays the pre-
dicted value. The red curve represents the perfect regression solution
(predict = true label). Both the latitude and longitude distributions
present every sign of a close-to-random distribution.
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during segmentation training, while it is well accepted that posi-
tion plays a role in filament properties and detection, motivates
us to give it as input to our model in order for it to utilize this
information (see Section 5.2).

Appendix C: Partially supervised learning

While Schisano et al. (2020) work is a rich dataset for super-
vised machine learning, we do not recommend training machine
learning models directly on this dataset for two main reasons:

1. First, if a model is fed directly with Schisano et al. (2020)
results as pixel annotation, it will at best mimic the Hessian
method. While this could be a good option to aggregate the
hessian and the post-processing (e.g. filtering small struc-
tures, removing artefacts) part of Schisano et al. (2020) work
into one single model and remove the hyperparameter depen-
dency, it won’t improve significantly performance, it cannot
detect new structures that have been missed by the Hessian
method.

2. Second, as good as Schisano et al. (2020) method is, it
missed some structures and added some artefacts (some did
not get removed during the post-processing phase). As deep
learning model performance highly depend on the input
data, we want to avoid training neural networks in noisy
settings (some samples of the training dataset are labelled
with one wrong label) because it reduces neural network
performance as shown in Song et al. (2022); Krause et al.
(2016); Arpit et al. (2017); Zhang et al. (2021).

To compensate for this and as done in Zavagno et al. (2023), we
define (on the pixel level) the class filament by pixels annotated
as such in Schisano et al. (2020) work. The class background
is composed of pixels with intensity lower than conservative
thresholds: for each mosaic, we determined a threshold for
which pixels with lower intensity were with no doubt back-
ground (no filament). The remaining pixels are considered as
unlabelled. To remove possible artifacts from the training data,
we defined mosaic by mosaic areas where pixels would be con-
sidered as unlabelled, mainly located on the overlapping regions
and the edge of the mosaics, the Hessian method being sen-
sitive to edge effects. During training, every pixel will be fed
into the network but the back-propagation will be done only on
labelled pixels filament and background), i.e. the loss won’t be
computed on unlabelled pixels. By using both background and
filament-labelled pixels we want to prevent neural networks from
overpredicting pixels as filaments. Machine learning models
learn with equal importance to classify pixels as background or
filament. Hence, predicting the class filament for a background
pixel increases the training error (and the loss which learning
aims at minimizing) and decreases performance metrics. When
those pixels are considered, the dataset goes from a very unbal-
anced one (about 2% of pixels are labelled as filaments, the rest
is labelled as background) to an almost balanced one (about 45%
of pixels labelled as filaments and 55% as background).

Appendix D: MSSIM

The MSSIM implementation used for performance measurement
(see Section 7.1) can be found in Scikit-Image2 van der Walt et al.
(2014). While Green et al. (2017) presents the MSSIM as a good
2 https://scikit-image.org/docs/stable/api/skimage.
metrics.html#skimage.metrics.structural_similarity

metric for filament detection, we run some experiments to know
how it behaves since it has no prior knowledge of what a fila-
ment is. It is an unsupervised metric and it depends on several
hyperparameters which means results, hence conclusions, might
depend on the hyperparameters used. If the MSSIM is a good
metric to judge filament detection/segmentation quality, it should
achieve two goals:

1. The MSSIM should get higher when we add real filaments
to the detection, i.e. if we compute the MSSIM on one seg-
mentation map and then on the same map but we add one
true filament which was missing in the segmentation, the
MSSIM should be higher for the second map because one
true filament was added.

2. The MSSIM should get lower when we add a false filament
to the detection, i.e., if we compute the MSSIM on one seg-
mentation map and then on the same map but we add a false
filament, the MSSIM of the second segmentation should be
lower because there is one false filament added.

From those two statements, we design an experiment to check if
they are verified or not:

1. Compute the MSSIM on a ground truth filament detec-
tion/segmentation.

2. Remove filaments one by one and compute the MSSIM over
the whole map for each filament. Since those filaments are
real (coming from a ground truth), the MSSIM should be
lower for every map where one filament was removed.

3. For each exiting filament, add a copy to every space possible
(without overlapping with existing filaments) and compute
the MSSIM after each copy. Since this filament is false (we
assume there is no missing filament in the ground truth), the
MSSIM of the segmentation map and one added filament
(wherever the filament is placed) should be lower than the
ground truth one.

If the ground truth is complete and the MSSIM is a good metric,
we should have 0% of true filaments increasing the MSSIM after
being deleted and 0% of false filaments increasing the MSSIM
after being added.

SSIM(a, b) =
(2µaµb + C1)(2σab + C2)

(µ2
a + µ

2
b + C1)(σ2

a + σ
2
b + C2)

(D.1)

In the MSSIM formula (see equation D.1), C1 and C2 are two
hyperparameters to prevent instability caused by division by 0.
We ran the above experiment for different values of C1 = C2 and
as stated in Wang et al. (2004), it doesn’t have much influence on
the results, as long as C1 << 1 and C2 << 1. In the Scikit-Image
implementation of the MSSIM, there are two ways of computing
it: either by block or with a Gaussian filter. The block method
consists of simply computing the mean, variance, and covariance
through a sliding window centre in each pixel of the image. The
default window size is 7 pixels (this value has to be odd). The
Gaussian method consists of applying a Gaussian filter before
computing the mean, variance, and covariance through a sliding
window. The window size is given by the hyper-parameter σ of
the Gaussian filter by the following formula:

windowsize(σ) = 2 × (3.5 × σ + 0.5) + 1 (D.2)

The metric presented originally in Wang et al. (2004) cor-
responds to the Gaussian implementation with σ = 1.5. To
run our experiment, we select two representative regions of
the Gp, one with high density and one with low density to
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Table D.1. Pourcentage of true filaments deleted and false filament
added which increases the MSSIM score.

Density Mode Size/Sigma % deleted % added
High gaussian 1.5 0 24
Low gaussian 1.5 0 42
High block 7 0 30
Low block 7 0 42
High block 33 3 8
Low block 33 2 29

Notes. Results from Schisano et al. (2020) were used as the ground-
truth to perform those experiments.

have representative samples of the column density encountered
during segmentation. The high- and low- density regions corre-
spond respectively to longitude 314◦ to 321◦ and 173◦ to 180◦.
Table D.1 presents results from the experiments explained above,
Column 1 indicates if the region studied corresponds to high or
low density, Column 2 to the computation mode of the MSSIM,
Column 3 the window size, Column 4 the percentage of true
filament which increase the MSSIM after being deleted and Col-
umn 5 the number of false filament added that increase the
MSSIM. One can observe that both the Gaussian and Block
with a window size of 7 perform the same. No filament from
the groundtruth was deleted but many false filaments increased
the MSSIM score for both low- and high-density regions. On
the counterpart, the Block implementation with a wider win-
dow (33 pixels in our experiments) adds fewer false filaments for
both high- and low-density regions. However, few true filaments
(respectively 2% and 3% for high- and low-density regions) were
deleted according to the MSSIM. Those results indicate that the
MSSIM is not behaving exactly how we would like to and it may
vary depending on what hyper-parameters are used, conclusions
based on only this metric should not be drawn.

Appendix E: Segmentation of the whole Gp

Because of the dynamic density and local normalization, high
overlap and averaging methods are needed to avoid striation
and discontinuity caused by edge effects in the segmentation
maps (see Figure E.1). To overcome this difficulty, we utilize the
dataset creation method outlined in Appendix A.1, with some
adjustments:

1. We introduce an overlap of 31 pixels (on both axes) between
subset areas during the mask creation step of dataset cre-
ation.

2. We did not define a validation set, models are trained
with optimal hyperparameters selected during the cross-
validation scheme.

3. The overlap between patches within subset areas is also set to
31 pixels on both axes for the test sets only. In the neural net-
work community, this corresponds to a stride (displacement
between two successive patches) of 1.

4. For the training sets, the overlap is set to 16 pixels to reduce
computation costs, hence a stride of 16.

Because of the dataset construction, when aggregating the dif-
ferent test sets of the subsets, we obtain one patch centred around
every pixel of the Gp, in other words, each pixel appears in 1024

patches (in test). From these datasets, the segmentation map of
the complete Gp is produced by the following steps:

1. Segment each patch individually.
2. Average, with uniform weights, the segmentation outputs for

each pixel to achieve smooth segmentation across the entire
Gp image.

3. Binarize the segmentation map using a threshold value of
0.5

4. Filter out small structures (filament smaller than 16 pixels
(Schisano et al. 2020)) to eliminate non-significant features
(Schisano et al. 2020, see Appendix B).

This method produces a smooth and nice-looking segmentation
of the Gp as observed in Figure E.1. To generate the maps out-
lined in Section 7.2, we use a value of k equal to 10 (resulting
in the training of ten models). The training and segmentation
together require approximately 72 hours (duration may vary
depending on the architecture trained). While a stride of 1 will
present the fewest discontinuities after the averaging of the seg-
mentation patch, it comes at a high computation price. We note
that a stride of N increases the number of patches by N2.
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Fig. E.1. Segmentation map obtained with an overlap of 31 pixels
between patches (top) and with a 0 overlap (bottom), resulting in dis-
continuity along structures and striation effect in the second case.
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