Who threw that rock?

Crater density




Why we do crater counting?

- Estimating the age of planetary surfaces (the more craters, the older the surface) (Fassett 2016; Hartmann 20085).
This can provide insights into geological processes of planetary bodies and beyond (late heavy bombardment, recent volcanicity and past presence of liquid
water on Mars...).

- Secondary carter mapping is key to identifying the ejection site of Martian meteorites (Lagain et al. 2021):

A large enough impact that can cause material to be ejected with enough velocity to escape Mars would also cause a ray pattern of secondaries (craters
formed by failed meteorites). By examining the patterns of small craters we can identify candidate primary craters.

In conjunction with other constraints (Cosmic Ray Exposure age and crystallisation age), we can narrow down the ejection site candidates to one-two for some
samples, enabling us to improve our understanding of Mars and its differences to the Earth.

- Similarly, we can learn more about the evolution of other targets, such as Mercury and Ceres.



Analysis

By combining the Mars
crater database and
resulting crater density
map, information about
TOF and composition we
can identify the source of
a major class of Martian
metearites.
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(2021). The Tharsis mantle
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90 million impact craters.
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Evaluation challenges

- Owing to crater degradation and depending on pixel size manually
counted craters from imagery by experts may produce different

results (Robbins et al. 2014) e.g.

- At least 20% difference in the number of craters amongst experts in
the above study, and 30% of difference in the crater size.
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- These results indicate that validation and training can be challenging
but an ML based approach can be useful but we need to keep in mind:

- Traditional measures of precision and recall will be low and :

- The final result will need to be validated independently using an : Etm%-‘&‘;z:(::s;:m‘;‘mo:)

independently labelled dataset. Figure 1: Left— NAC areas analyzed in this study
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Fast labelling

- Experts would ordinarily take a few seconds to mark a crater but in order to reach the desired scale using automated methods, billions of
detections are necessary.

- biven the variable results between experts, speed of inference is of primary concern.



Previous versions of CDA:

Monolithic container based version used with Themis data (Benedix et al. 2020)
o  Shell script based version used for Jezero crater mapping (Servis et al. 2020)

Advantages of nextflow version:

o Modularity

o Reusability

o [onfiguration injection
* Readability

* More target platforms
* \Visualisation

e log and trace



There are several high-level tasks that are coded as workflows:

* [eoreferencing: Taking a raw image from an orbiter and
producing a georeferenced tile.

e Training: Using labelled tiles to train the algorithm

o |nference: Taking a trained network and producing a crater
database.

* Annotation: Taking an image and a crater database and
producing an annotated image.




Main characteristics of the architecture (Redmon et al. 201B):

o |ses Convolutional Neural Network (CNN) blocks.

o [Ibject detection as regression, instead of classification:

* The network gives bounding box coordinates and class confidence
(in this case we use only one class i.e. "crater”)

o |nternally there are a number of anchor points in the pixel
coordinates and an offset and size are produced as regression,
along side the class confidence.

o |ntended inference performance is real-time applications, such as
self-driving cars, making it suitable for potentially millions of
images (tiles in this case) that need to be evaluated.
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‘ Object Detection

COCO test-dev Benchmark (Object Detection) | Papers With Code

https://paperswithcode.com/sota/object-detection-on-coco

Object Detection on COCO test-dev

Leaderboard Dataset
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Detection Frameworks Train mAP FPS
Fast R-CNN [5] 200742012 700 0.5
Faster R-CNN VGG-16[15] 200742012 73.2 7
Faster R-CNN ResNet[¢] 2007+2012 76.4 5
YOLO [14] 2007+2012 634 45
SSD300[!1] 2007+2012 74.3 46
SSD500[11] 200742012 76.8 19
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YOLOvV2 416 x 416 2007+2012 76.8 67
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YOLOV2 544 x 544 2007+2012 78.6 40


https://paperswithcode.com/sota/object-detection-on-coco

* Training set from High-Resolution Imaging Science Experiment (Zacm/px) (McEwen et al. 2023) on Mars Reconnaissance Orbiter :

On such a small scale there are many non-crater features that we can train the network to avoid.
Used the Jezero crater site (E77-2-NI8-0) where 2147 craters were manually marked of which a0l were held out for validation.

Extensive use of augmentation to expand the training dataset ( rotation, shear, scaling and translation).

For Mars YOLOv3 was used.

« Evaluation of the final results was by labelling the intended target data set from Context Camera also on the Mars Reconnaissance
Orbiter:

Manually mapping 2000 craters on the CTX on different geological units.
CTX resolution is Bm/px so a [0px diameter corresponds to B0m which was the lower limit evaluated.

|t was noted that mid- and high-latitude (>al deg) performance is lower due to the higher degree of crater degradation and the presence of
glacial features (e.g. geysers, mud volcanges...).

Overall the Fl score was 0.75 for the evaluation using CTX bearing in mind that we set the intersection over union for considering some
crater as the same at [1.3.



Covering the entire surface of Mars to am/px Additional considerations

» ~|3000 original size images am/px from Murray Lab * Executions fail but we don't want to start

from scratch after a fix.
o Downsample each to 40m/px and [60m/px = ~4a000 images

e Execution needs to be done in groups,

* Tile each (8-2000 tiles) = a few tens of millions of tiles otherwise there would be too many jobs

o Mark each tile producing ~0-100 detections on each on the cluster, but groups need to be
identifiable for debugging and individually

o "“lntile” each group of detections repeatable.

e Run Non-max suppression on groups of nine adjacent scenes (target plus surrounds) « Dev/Test on local docker but deployment

on slurm/singularity



Inference workflow of CDA
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 Downsampling is needed in order to detect craters that are not visible due to being too large and only a small
portion of them being on the highest resolution .
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Execution graph

o Execution graph
 Report

e Timeline

Processes execution timeline

Launch time: 13 Aug 2021 17:53
Elapsed time: 2m 1s
Legend: job wall time / memory usage (RAM)

Raw Usage

9% single core CPU usage

Resource Usage

These plots give an overview of the distribution of resource usage for each process.
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Magnus Leus

MAGNUS - CRAY XC40, XEON E5-2690V3 12C 2.6GHZ,
ARIES INTERCONNECT

20 visualization nodes
44 Pascal GPUs for GPU computing

o e e e e A 80 Xeon Phi nodes for manycore jobs
Menufacturer: revre 1 TB large memory nodes

2,240 CPU cores for serial codes
Processor: Xeon E5-269013 126 2.66Hz FDR/EDR Infiniband interconnect
Interconnect: Aries interconnect

Installation Year: 2014



Long story short

* Hereis where we
believe the
depleted
shergottites most
likely came from.

Coordinates on Mars: 23°6'0"N, 2076 O"E (23.1°,207.1°) Type: landmark



Significance

« The finding implies a major thermal anomaly (a plume), that has been active in the Tharsis
region throughout the history of Mars.

o This s likely similar to the process underlying volcanism in Hawaii, but:

« dince Mars has no tectonic plates that plume of magma has been rising for billions of years
undisturbed and caused the Tharsis region to form and grow.

o This activity stopped 340Ma ago (later activity may have existed but are not recorded in the
group of meteorites considered here)



Another stray rock!

e lsing our database and TOF analysis and
some newer simulations we were also able
to identify the source of the Black Beauty
meteorite as the Karratha crater.

+  Ref Lagain, A. Bouley, S., Zanda, B., Milikovi¢, K., Rajgi¢, A.,
Baratoux, D..... G Bland, P. A. (2022). Early crustal processes

revealed by the ejection site of the oldest martian metearite.

Nature Lommunications, /1), 3182.
iy 'y '\

Karratha Crater on Mars, source NASA MRO.



We have already used this workflow on other rocky bodies to calibrate model ages and understand whether the overall flux has
changed

* Moon (Fairweather et al. 2022, 2023)
o Multiple bodies (Earth, Mars, Moon) (Lagain et al. 2027)
o [thers pending publication
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